Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.463
Filtrar
1.
Comput Biol Med ; 173: 108370, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564854

RESUMO

The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-scale pre-training schedule, limiting the clinical applications over expensive small-scale medical data. To this end, we propose a slimmable transformer to explore intrinsic inductive bias via position information for medical image segmentation. Specifically, we empirically investigate how different position encoding strategies affect the prediction quality of the region of interest (ROI) and observe that ROIs are sensitive to different position encoding strategies. Motivated by this, we present a novel Hybrid Axial-Attention (HAA) that can be equipped with pixel-level spatial structure and relative position information as inductive bias. Moreover, we introduce a gating mechanism to achieve efficient feature selection and further improve the representation quality over small-scale datasets. Experiments on LGG and COVID-19 datasets prove the superiority of our method over the baseline and previous works. Internal workflow visualization with interpretability is conducted to validate our success better; the proposed slimmable transformer has the potential to be further developed into a visual software tool for improving computer-aided lesion diagnosis and treatment planning.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Diagnóstico por Computador , Software , Fluxo de Trabalho , Processamento de Imagem Assistida por Computador
2.
Sci Data ; 11(1): 358, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594314

RESUMO

This paper presents a standardised dataset versioning framework for improved reusability, recognition and data version tracking, facilitating comparisons and informed decision-making for data usability and workflow integration. The framework adopts a software engineering-like data versioning nomenclature ("major.minor.patch") and incorporates data schema principles to promote reproducibility and collaboration. To quantify changes in statistical properties over time, the concept of data drift metrics (d) is introduced. Three metrics (dP, dE,PCA, and dE,AE) based on unsupervised Machine Learning techniques (Principal Component Analysis and Autoencoders) are evaluated for dataset creation, update, and deletion. The optimal choice is the dE,PCA metric, combining PCA models with splines. It exhibits efficient computational time, with values below 50 for new dataset batches and values consistent with seasonal or trend variations. Major updates (i.e., values of 100) occur when scaling transformations are applied to over 30% of variables while efficiently handling information loss, yielding values close to 0. This metric achieved a favourable trade-off between interpretability, robustness against information loss, and computation time.


Assuntos
Conjuntos de Dados como Assunto , Software , Análise de Componente Principal , Reprodutibilidade dos Testes , Fluxo de Trabalho , Conjuntos de Dados como Assunto/normas , Aprendizado de Máquina
3.
Trials ; 25(1): 267, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627819

RESUMO

BACKGROUND: Complete tooth loss is a significant global oral health issue, particularly impacting older individuals with lower socioeconomic status. Computer-assisted technologies enhance oral healthcare access by the elderly. Despite promising in vitro reports on digital denture materials, evidence from randomized clinical trials (RCTs) is lacking to verify their performance. This cross-over RCT will investigate whether 3D-printed implant-retained mandibular overdentures (IMO) are more satisfactory for edentulous seniors than those made through traditional methods. METHODS/DESIGN: We will recruit 26 completely edentulous participants (any sex/gender) based on the following eligibility criteria: age ≥ 60 years, no tooth extraction in the past 12 months, two implants in the lower jaw, and need for new dentures in both jaws. Each participant will receive two denture pairs, either manufactured by 3D printing or traditionally, to be worn in a random order. A timeline of 3 months with each denture pair will be considered for outcome assessment (total: 6 months). Patient satisfaction with dentures will be measured by the McGill Denture Satisfaction Questionnaire. We will evaluate other patient-reported outcomes (including oral health-related quality of life) as well as clinician-assessed quality and cost. At the end of the trial, participants will choose which denture pair they wish to keep and interviewed about their experiences with the 3D-printed IMO. The quantitative and qualitative data will be incorporated through an explanatory mixed-methods strategy. A final quantitative assessment will happen after 12 months with the preferred IMO to assess the long-term performance and maintenance needs. DISCUSSION: This mixed-methods RCT will explore patient experiences with 3D-printed IMOs, aiming to assess the potential for altering clinical practice and dental public health policies. Our results will inform policies by showing whether 3D printing offers comparable outcomes at lower costs, facilitating greater access to oral care for the elderly. TRIAL REGISTRATION: ClinicalTrials.gov, NCT06155630, Registered on 04 December 2023. https://classic. CLINICALTRIALS: gov/ct2/show/NCT06155630.


Assuntos
Implantes Dentários , Arcada Edêntula , Humanos , Idoso , Pessoa de Meia-Idade , Revestimento de Dentadura , Fluxo de Trabalho , Mandíbula/cirurgia , Satisfação do Paciente , Impressão Tridimensional , Prótese Dentária Fixada por Implante , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Sci Rep ; 14(1): 8159, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589623

RESUMO

Whole-genome sequencing (WGS) is currently making its transition from research tool into routine (clinical) diagnostic practice. The workflow for WGS includes the highly labor-intensive library preparations (LP), one of the most critical steps in the WGS procedure. Here, we describe the automation of the LP on the flowbot ONE robot to minimize the risk of human error and reduce hands-on time (HOT). For this, the robot was equipped, programmed, and optimized to perform the Illumina DNA Prep automatically. Results obtained from 16 LP that were performed both manually and automatically showed comparable library DNA yields (median of 1.5-fold difference), similar assembly quality values, and 100% concordance on the final core genome multilocus sequence typing results. In addition, reproducibility of results was confirmed by re-processing eight of the 16 LPs using the automated workflow. With the automated workflow, the HOT was reduced to 25 min compared to the 125 min needed when performing eight LPs using the manual workflow. The turn-around time was 170 and 200 min for the automated and manual workflow, respectively. In summary, the automated workflow on the flowbot ONE generates consistent results in terms of reliability and reproducibility, while significantly reducing HOT as compared to manual LP.


Assuntos
Lipopolissacarídeos , Robótica , Humanos , Reprodutibilidade dos Testes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biblioteca Gênica , Sequenciamento Completo do Genoma , DNA , Fluxo de Trabalho
5.
J Med Internet Res ; 26: e51138, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602750

RESUMO

Modern machine learning approaches have led to performant diagnostic models for a variety of health conditions. Several machine learning approaches, such as decision trees and deep neural networks, can, in principle, approximate any function. However, this power can be considered to be both a gift and a curse, as the propensity toward overfitting is magnified when the input data are heterogeneous and high dimensional and the output class is highly nonlinear. This issue can especially plague diagnostic systems that predict behavioral and psychiatric conditions that are diagnosed with subjective criteria. An emerging solution to this issue is crowdsourcing, where crowd workers are paid to annotate complex behavioral features in return for monetary compensation or a gamified experience. These labels can then be used to derive a diagnosis, either directly or by using the labels as inputs to a diagnostic machine learning model. This viewpoint describes existing work in this emerging field and discusses ongoing challenges and opportunities with crowd-powered diagnostic systems, a nascent field of study. With the correct considerations, the addition of crowdsourcing to human-in-the-loop machine learning workflows for the prediction of complex and nuanced health conditions can accelerate screening, diagnostics, and ultimately access to care.


Assuntos
Crowdsourcing , Transtornos Mentais , Humanos , Medicina de Precisão , Fluxo de Trabalho , Aprendizado de Máquina
6.
Br Dent J ; 236(7): 568, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38609635
7.
BMC Bioinformatics ; 25(1): 142, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566005

RESUMO

BACKGROUND: The rapid advancement of new genomic sequencing technology has enabled the development of multi-omic single-cell sequencing assays. These assays profile multiple modalities in the same cell and can often yield new insights not revealed with a single modality. For example, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) simultaneously profiles the RNA transcriptome and the surface protein expression. The surface protein markers in CITE-Seq can be used to identify cell populations similar to the iterative filtration process in flow cytometry, also called "gating", and is an essential step for downstream analyses and data interpretation. While several packages allow users to interactively gate cells, they often do not process multi-omic sequencing datasets and may require writing redundant code to specify gate boundaries. To streamline the gating process, we developed CITEViz which allows users to interactively gate cells in Seurat-processed CITE-Seq data. CITEViz can also visualize basic quality control (QC) metrics allowing for a rapid and holistic evaluation of CITE-Seq data. RESULTS: We applied CITEViz to a peripheral blood mononuclear cell CITE-Seq dataset and gated for several major blood cell populations (CD14 monocytes, CD4 T cells, CD8 T cells, NK cells, B cells, and platelets) using canonical surface protein markers. The visualization features of CITEViz were used to investigate cellular heterogeneity in CD14 and CD16-expressing monocytes and to detect differential numbers of detected antibodies per patient donor. These results highlight the utility of CITEViz to enable the robust classification of single cell populations. CONCLUSIONS: CITEViz is an R-Shiny app that standardizes the gating workflow in CITE-Seq data for efficient classification of cell populations. Its secondary function is to generate basic feature plots and QC figures specific to multi-omic data. The user interface and internal workflow of CITEViz uniquely work together to produce an organized workflow and sensible data structures for easy data retrieval. This package leverages the strengths of biologists and computational scientists to assess and analyze multi-omic single-cell datasets. In conclusion, CITEViz streamlines the flow cytometry gating workflow in CITE-Seq data to help facilitate novel hypothesis generation.


Assuntos
Leucócitos Mononucleares , Software , Humanos , Análise de Sequência de RNA/métodos , Fluxo de Trabalho , Citometria de Fluxo , Proteínas de Membrana , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
8.
Transl Vis Sci Technol ; 13(4): 14, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591946

RESUMO

Purpose: Retinal sensitivity is frequently listed as an end point in clinical trials, often with long working practices. The purpose of this methods study was to provide a new workflow and reduced test time for in-depth characterization of retinal sensitivity. Methods: A workflow for the MP3-S microperimeter with detailed functional characterization of the retina under photopic, mesopic, and scotopic conditions was evaluated. Grids of 32 and 28 test positions for photopic/mesopic and scotopic, respectively, were tested in 12 healthy individuals and compared with an established 68-point grid for test time, mean sensitivity (MS), and bivariate contour ellipse area (BCEA). Results: The mean test time (range; ±SD) was 10.5 minutes (8.4-14.9; ±2.0) in the 68-point grid and 4.3 minutes (3.8-5.0; ±0.4) in the 32-point grid, which was significantly different (P < 0.0001). The mean of difference in test time (±SD; 95% confidence interval) was 6.1 minutes (±2.0; 4.6-7.6). MS and BCEA were significantly correlated between grids (r = 0.89 and 0.74; P = 0.0005 and 0.014, respectively). Mean test time of subjects who underwent the full protocol (n = 4) was 2.15 hours. Conclusions: The protocol suggested herein appears highly feasible with in-depth characterization of retinal function under different testing conditions and in a short test time. Translational Relevance: The protocol described herein allows for characterization of the retina under different testing conditions and in a short test time, which is relevant due to its potential for patient prognostication and follow-up in clinical settings and also given its increasing role as a clinical trial end point.


Assuntos
Retina , Humanos , Retina/fisiologia , Fluxo de Trabalho , Determinação de Ponto Final , Ensaios Clínicos como Assunto
9.
BMC Oral Health ; 24(1): 410, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566034

RESUMO

BACKGROUND: To clinically compare the effect of the conventional and the digital workflows on the passive fit of a screw retained bar splinting two inter-foraminal implants. METHODS: The current study was designed to be a parallel triple blinded randomised clinical trial. Thirty six completely edentulous patients were selected and simply randomized into two groups; conventional group (CG) and digital group (DG). The participants, investigator and outcome assessor were blinded. In the group (CG), the bar was constructed following a conventional workflow in which an open top splinted impression and a lost wax casting technology were used. However, in group (DG), a digital workflow including a digital impression and a digital bar milling technology was adopted. Passive fit of each bar was then evaluated clinically by applying the screw resistance test using the "flag" technique in the passive and non passive situations. The screw resistance test parameter was also calculated. Unpaired t-test was used for intergroup comparison. P-value < 0.05 was the statistical significance level. The study protocol was reviewed by the Research Ethics Committee in the author's university (Rec IM051811). Registration of the clinical trial was made on clinical trials.gov ID NCT05770011. An informed consent was obtained from all participants. RESULTS: Non statistically significant difference was denoted between both groups in all situations. In the passive situation, the mean ± standard deviation values were 1789.8° ± 20.7 and1786.1° ± 30.7 for the groups (CG) and (DG) respectively. In the non passive situation, they were 1572.8° ± 54.2 and 1609.2° ± 96.9. Regarding the screw resistance test parameter, they were 217° ± 55.3 and 176° ± 98.8. CONCLUSION: Conventional and digital fabrication workflows had clinically comparable effect on the passive fit of screw retained bar attachments supported by two dental implants.


Assuntos
Implantes Dentários , Boca Edêntula , Humanos , Fluxo de Trabalho , Técnica de Moldagem Odontológica , Parafusos Ósseos , Desenho Assistido por Computador , Prótese Dentária Fixada por Implante/métodos , Planejamento de Prótese Dentária
10.
PLoS One ; 19(4): e0288121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568890

RESUMO

Deep learning shows promise for automating detection and classification of wildlife from digital aerial imagery to support cost-efficient remote sensing solutions for wildlife population monitoring. To support in-flight orthorectification and machine learning processing to detect and classify wildlife from imagery in near real-time, we evaluated deep learning methods that address hardware limitations and the need for processing efficiencies to support the envisioned in-flight workflow. We developed an annotated dataset for a suite of marine birds from high-resolution digital aerial imagery collected over open water environments to train the models. The proposed 3-stage workflow for automated, in-flight data processing includes: 1) image filtering based on the probability of any bird occurrence, 2) bird instance detection, and 3) bird instance classification. For image filtering, we compared the performance of a binary classifier with Mask Region-based Convolutional Neural Network (Mask R-CNN) as a means of sub-setting large volumes of imagery based on the probability of at least one bird occurrence in an image. On both the validation and test datasets, the binary classifier achieved higher performance than Mask R-CNN for predicting bird occurrence at the image-level. We recommend the binary classifier over Mask R-CNN for workflow first-stage filtering. For bird instance detection, we leveraged Mask R-CNN as our detection framework and proposed an iterative refinement method to bootstrap our predicted detections from loose ground-truth annotations. We also discuss future work to address the taxonomic classification phase of the envisioned workflow.


Assuntos
Animais Selvagens , Aprendizado Profundo , Animais , Fluxo de Trabalho , Redes Neurais de Computação , Tecnologia de Sensoriamento Remoto/métodos , Aves
11.
Anal Chem ; 96(10): 4266-4274, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469638

RESUMO

We introduce a novel approach for comprehensive molecular profiling in biological samples. Our single-section methodology combines quantitative mass spectrometry imaging (Q-MSI) and a single step extraction protocol enabling lipidomic and proteomic liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis on the same tissue area. The integration of spatially correlated lipidomic and proteomic data on a single tissue section allows for a comprehensive interpretation of the molecular landscape. Comparing Q-MSI and Q-LC-MS/MS quantification results sheds new light on the effect of MSI and related sample preparation. Performing MSI before Q-LC-MS on the same tissue section led to fewer protein identifications and a lower correlation between lipid quantification results. Also, the critical role and influence of internal standards in Q-MSI for accurate quantification is highlighted. Testing various slide types and the evaluation of different workflows for single-section spatial multiomics analysis emphasized the need for critical evaluation of Q-MSI data. These findings highlight the necessity for robust quantification methods comparable to current gold-standard LC-MS/MS techniques. The spatial information from MSI allowed region-specific insights within heterogeneous tissues, as demonstrated for glioblastoma multiforme. Additionally, our workflow demonstrated the efficiency of a single step extraction for lipidomic and proteomic analyses on the same tissue area, enabling the examination of significantly altered proteins and lipids within distinct regions of a single section. The integration of these insights into a lipid-protein interaction network expands the biological information attainable from a tissue section, highlighting the potential of this comprehensive approach for advancing spatial multiomics research.


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cromatografia Líquida , Fluxo de Trabalho , 60705 , Proteômica/métodos , Lipídeos/análise
12.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474031

RESUMO

Gene therapy holds great promise for the treatment of severe diseases, and adeno-associated virus (AAV) vectors have emerged as valuable tools in this field. However, challenges such as immunogenicity and high production costs complicate the commercial viability of AAV-based therapies. To overcome these barriers, improvements in production yield, driven through the availability of robust and sensitive characterization techniques that allow for the monitoring of critical quality attributes to deepen product and process understanding are crucial. Among the main attributes affecting viral production and performance, the ratio between empty and full capsids along with capsid protein stoichiometry are emerging as potential parameters affecting product quality and safety. This study focused on the production of AAV vectors using the baculovirus expression vector system (BEVS) in Sf9 cells and the complete characterization of AAV5 variants using novel liquid chromatography and mass spectrometry techniques (LC-MS) that, up to this point, had only been applied to reference commercially produced virions. When comparing virions produced using ATG, CTG or ACG start codons of the cap gene, we determined that although ACG was the most productive in terms of virus yield, it was also the least effective in transducing mammalian cells. This correlated with a low VP1/VP2 ratio and a higher percentage of empty capsids. Overall, this study provides insights into the impact of translational start codon modifications during rAAV5 production using the BEVS, the associated relationship with capsid packaging, capsid protein stoichiometry and potency. The developed characterization workflow using LC-MS offers a comprehensive and transferable analysis of AAV-based gene therapies, with the potential to aid in process optimization and facilitate the large-scale commercial manufacturing of these promising treatments.


Assuntos
Proteínas do Capsídeo , Dependovirus , Animais , Proteínas do Capsídeo/genética , Dependovirus/genética , Cromatografia Líquida , 60705 , Fluxo de Trabalho , Vetores Genéticos , Espectrometria de Massas em Tandem , Baculoviridae/genética , Mamíferos/metabolismo
13.
Protein Sci ; 33(4): e4928, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501511

RESUMO

Molecular features play an important role in different bio-chem-informatics tasks, such as the Quantitative Structure-Activity Relationships (QSAR) modeling. Several pre-trained models have been recently created to be used in downstream tasks, either by fine-tuning a specific model or by extracting features to feed traditional classifiers. In this regard, a new family of Evolutionary Scale Modeling models (termed as ESM-2 models) was recently introduced, demonstrating outstanding results in protein structure prediction benchmarks. Herein, we studied the usefulness of the different-dimensional embeddings derived from the ESM-2 models to classify antimicrobial peptides (AMPs). To this end, we built a KNIME workflow to use the same modeling methodology across experiments in order to guarantee fair analyses. As a result, the 640- and 1280-dimensional embeddings derived from the 30- and 33-layer ESM-2 models, respectively, are the most valuable  since statistically better performances were achieved by the QSAR models built from them. We also fused features of the different ESM-2 models, and it was concluded that the fusion contributes to getting better QSAR models than using features of a single ESM-2 model. Frequency studies revealed that only a portion of the ESM-2 embeddings is valuable for modeling tasks since between 43% and 66% of the features were never used. Comparisons regarding state-of-the-art deep learning (DL) models confirm that when performing methodologically principled studies in the prediction of AMPs, non-DL based QSAR models yield comparable-to-superior performances to DL-based QSAR models. The developed KNIME workflow is available-freely at https://github.com/cicese-biocom/classification-QSAR-bioKom. This workflow can be valuable to avoid unfair comparisons regarding new computational methods, as well as to propose new non-DL based QSAR models.


Assuntos
Peptídeos Antimicrobianos , Fluxo de Trabalho
14.
Int J Prosthodont ; 37(7): 89-98, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38498861

RESUMO

PURPOSE: To assess crown die trueness using additive manufacturing (AM) based on intraoral scanning (IOS) data and compare it with stone models. MATERIALS AND METHODS: Crown dies with four finish line types- equigingival shoulder (SAE), subgingival shoulder (SAS), equigingival chamfer (CAE), and subgingival chamfer (CAS)-were incorporated into a reference model and scanned with a coordinate measurement machine (CMM; n = 1 scan). Trios4 (3Shape) scans generated a second reference dataset (IOS; n = 10 scans). Using scans, crown dies were produced with two different 3D printers (MAX UV385 [Asiga] and NextDent 5100 [3DSystems]; n = 10 per system). Stone dies were created from conventional impressions (n = 10). Specimens were digitized with a laboratory scanner (E4, 3Shape). Trueness was evaluated with Geomagic Control X (3DSystems). Data analysis was done using Shapiro-Wilk, Levene, ANOVA, and t tests (α < .05). RESULTS: All crown dies fell within the clinically acceptable trueness range (150 µm). IOS exhibited significantly lower (P < .05; Δ ≤ 21.7 µm) or similar trueness compared to stone models. Asiga dies demonstrated similar and NextDent significantly lower marginal trueness than IOS (P < .05; Δ ≤ 57.3 µm). Most AM margin areas had significantly lower trueness than stone (P < .001; Δ ≤ 57.2 µm). Asiga outperformed NextDent (P < .001). Shoulder trueness surpassed chamfer in optical scans (P = .01). Finish line design and gingiva location did not have a significant impact on AM and stone models (P > .05). CONCLUSIONS: Combining IOS and AM achieves clinically acceptable crown die trueness for single molar teeth. The choice of AM device is critical, with Asiga outperforming NextDent. Finish-line design has an impact on optical scans. Finish-line design and marginal gingiva location have little effect on AM trueness.


Assuntos
Desenho Assistido por Computador , Dente , Fluxo de Trabalho , Coroas , Técnica de Moldagem Odontológica , Imageamento Tridimensional
15.
Metabolomics ; 20(2): 42, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491298

RESUMO

INTRODUCTION: Untargeted direct mass spectrometric analysis of volatile organic compounds has many potential applications across fields such as healthcare and food safety. However, robust data processing protocols must be employed to ensure that research is replicable and practical applications can be realised. User-friendly data processing and statistical tools are becoming increasingly available; however, the use of these tools have neither been analysed, nor are they necessarily suited for every data type. OBJECTIVES: This review aims to analyse data processing and analytic workflows currently in use and examine whether methodological reporting is sufficient to enable replication. METHODS: Studies identified from Web of Science and Scopus databases were systematically examined against the inclusion criteria. The experimental, data processing, and data analysis workflows were reviewed for the relevant studies. RESULTS: From 459 studies identified from the databases, a total of 110 met the inclusion criteria. Very few papers provided enough detail to allow all aspects of the methodology to be replicated accurately, with only three meeting previous guidelines for reporting experimental methods. A wide range of data processing methods were used, with only eight papers (7.3%) employing a largely similar workflow where direct comparability was achievable. CONCLUSIONS: Standardised workflows and reporting systems need to be developed to ensure research in this area is replicable, comparable, and held to a high standard. Thus, allowing the wide-ranging potential applications to be realised.


Assuntos
Metabolômica , Compostos Orgânicos Voláteis , Metabolômica/métodos , Espectrometria de Massas/métodos , Padrões de Referência , Fluxo de Trabalho
16.
Hum Genomics ; 18(1): 25, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486307

RESUMO

With the development of next-generation sequencing technology, de novo variants (DNVs) with deleterious effects can be identified and investigated for their effects on birth defects such as congenital heart disease (CHD). However, statistical power is still limited for such studies because of the small sample size due to the high cost of recruiting and sequencing samples and the low occurrence of DNVs. DNV analysis is further complicated by genetic heterogeneity across diseased individuals. Therefore, it is critical to jointly analyze DNVs with other types of genomic/biological information to improve statistical power to identify genes associated with birth defects. In this review, we discuss the general workflow, recent developments in statistical methods, and future directions for DNV analysis.


Assuntos
Heterogeneidade Genética , Genômica , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Tamanho da Amostra , Fluxo de Trabalho
17.
Int J Med Robot ; 20(2): e2625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38439215

RESUMO

BACKGROUND: Surgical workflow assessments offer insight regarding procedure variability. We utilised an objective method to evaluate workflow during robotic proctectomy (RP). METHODS: We annotated 31 RPs and used Spearman's correlation to measure the correlation of step time and step visit frequency with console time (CT) and total operative time (TOT). RESULTS: Strong correlations were seen with CT and step times for inferior mesenteric vein dissection and ligation (ρ = 0.60, ρ = 0.60), lateral-to-medial splenic flexure mobilisation (SFM) (ρ = 0.63), left rectal dissection (ρ = 0.64) and mesorectal division (ρ = 0.71). CT correlated strongly with medial-to-lateral (ρ = 0.75) and supracolic SFM visit frequency (ρ = 0.65). TOT correlated strongly with initial exposure time (ρ = 0.60), and medial-to-lateral (ρ = 0.67) and supracolic SFM visit frequency (ρ = 0.65). CONCLUSION: This study correlates surgical steps with CT and TOT through standardised annotation, providing an objective approach to quantify workflow.


Assuntos
Protectomia , Procedimentos Cirúrgicos Robóticos , Humanos , Fluxo de Trabalho , Dissecação , Duração da Cirurgia
18.
Microb Cell Fact ; 23(1): 74, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433206

RESUMO

BACKGROUND: Lactic acid bacteria are commonly used as protective starter cultures in food products. Among their beneficial effects is the production of ribosomally synthesized peptides termed bacteriocins that kill or inhibit food-spoiling bacteria and pathogens, e.g., members of the Listeria species. As new bacteriocins and producer strains are being discovered rapidly, modern automated methods for strain evaluation and bioprocess development are required to accelerate screening and development processes. RESULTS: In this study, we developed an automated workflow for screening and bioprocess optimization for bacteriocin producing lactic acid bacteria, consisting of microcultivation, sample processing and automated antimicrobial activity assay. We implemented sample processing workflows to minimize bacteriocin adsorption to producer cells via addition of Tween 80 and divalent cations to the cultivation media as well as acidification of culture broth prior to cell separation. Moreover, we demonstrated the applicability of the automated workflow to analyze influence of media components such as MES buffer or yeast extract for bacteriocin producers Lactococcus lactis B1629 and Latilactobacillus sakei A1608. CONCLUSIONS: Our automated workflow provides advanced possibilities to accelerate screening and bioprocess optimization for natural bacteriocin producers. Based on its modular concept, adaptations for other strains, bacteriocin products and applications are easily carried out and a unique tool to support bacteriocin research and bioprocess development is provided.


Assuntos
Bacteriocinas , Lactobacillales , Lactococcus lactis , Latilactobacillus sakei , Fluxo de Trabalho , Adsorção
19.
Biotechnol J ; 19(3): e2300684, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509783

RESUMO

Organotypic human tissue models constitute promising systems to facilitate drug discovery and development. They allow to maintain native cellular phenotypes and functions, which enables long-term pharmacokinetic and toxicity studies, as well as phenotypic screening. To trace relevant phenotypic changes back to specific targets or signaling pathways, comprehensive proteomic profiling is the gold-standard. A multitude of proteomic workflows have been applied on 3D tissue models to quantify their molecular phenotypes; however, their impact on analytical results and biological conclusions in this context has not been evaluated. The performance of twelve mass spectrometry-based global proteomic workflows that differed in the amount of cellular input, lysis protocols and quantification methods was compared for the analysis of primary human liver spheroids. Results differed majorly between protocols in the total number and subcellular compartment bias of identified proteins, which is particularly relevant for the reliable quantification of transporters and drug metabolizing enzymes. Using a model of metabolic dysfunction-associated steatotic liver disease, we furthermore show that critical disease pathways are robustly identified using a standardized high throughput-compatible workflow based on thermal lysis, even using only individual spheroids (1500 cells) as input. The results increase the applicability of proteomic profiling to phenotypic screens in organotypic microtissues and provide a scalable platform for deep phenotyping from limited biological material.


Assuntos
Fígado , Proteômica , Humanos , Fluxo de Trabalho , Proteômica/métodos , Fígado/metabolismo , Espectrometria de Massas/métodos , Fenótipo
20.
BMC Oral Health ; 24(1): 374, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519905

RESUMO

OBJECTIVES: To compare the crown accuracy and time efficiency of a complete digital workflow, utilizing an auxiliary occlusal device and IO scanning, with a conventional workflow, for multiple implant-supported single crowns. MATERIALS AND METHODS: 24 patients with two adjacent posterior implants were included. 12 patients were randomly assigned to digital workflow group, involving intra-oral scanning with an auxiliary occlusal device and manufacture of customized abutments and zirconia single crowns (test group). The other 12 were assigned to the conventional workflow (control group), involving conventional impression and CAD-CAM crowns based on stone casts. Crown scanning was done before and after clinical adjustment using an intraoral scanner. Two 3D digital models were overlapped to assess dimension changes. Chair-side and laboratory times for the entire workflow were recorded and a linear mixed model and Independent-sample t tests were used for the statistical analysis. RESULTS: The maximum occlusal deviation was 279.67 ± 112.17 µm and 479.59 ± 203.63 µm in the test and control group, respectively (p < 0.001). The sizes of the occlusion adjustment areas were 12.12 ± 10.51 mm2 and 25.12 ± 14.14 mm2 in the test and control groups, respectively (p = 0.013). The mean laboratory time was 46.08 ± 5.45 and 105.92 ± 6.10 min in the test and control groups, respectively (p < 0.001).The proximal contact adjustment and mean chair-side time showed no statistically significant difference between two groups. CONCLUSIONS: A digital workflow for two implants-supported single crowns using an auxiliary device required fewer occlusal crown adjustments, and less laboratory time compared to conventional workflow. CLINICAL RELEVANCE: The use of auxiliary occlusal devices in IOS enhances the accuracy of virtual maxillomandibular relationship in extended edentulous spans. Consequently, employing a digital workflow for multiple implants-supported crowns using IO scanning and an auxiliary occlusal device proves to be a feasible, accurate and efficient approach.


Assuntos
Implantes Dentários , Planejamento de Prótese Dentária , Humanos , Fluxo de Trabalho , Coroas , Desenho Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...