Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 21 de 5.512
Filtrar
2.
Lancet Infect Dis ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39243794

RESUMEN

BACKGROUND: Chikungunya outbreaks have been reported in Brazil since 2014. Adolescents are a sensitive population who would benefit from a prophylactic vaccine. This study assessed the immunogenicity and safety of the vaccine VLA1553 in adolescents in Brazil. With an overall trial duration of 12 months, we now report data on safety and immunogenicity over a period of 28 days after vaccination. METHODS: In this double-blind, randomised, placebo-controlled phase 3 trial, adolescents aged 12 to <18 years were recruited. The trial was performed at ten trial sites across Brazil. Eligible participants were generally healthy. The main exclusion criteria comprised immune-mediated or chronic arthritis or arthralgia, a known or suspected defect of the immune system, or any live vaccine received within the 4 weeks before trial vaccination. Randomisation was stratified by baseline serostatus in a 2:1 ratio to receive VLA1553 (at a dose of 1 × 104 TCID50 per 0·5 mL [ie, 50% tissue culture infectious dose]) or placebo. VLA1553 or placebo was administered intramuscularly as a single-dose immunisation on day 1. The primary endpoint was the proportion of baseline seronegative participants with chikungunya virus neutralising antibody levels of 150 or more in µPRNT50 (a micro plaque reduction neutralisation test), which was considered a surrogate of protection. The safety analysis included all participants receiving a trial vaccination. Immunogenicity analyses were performed in a subset. The trial is registered with ClinicalTrials.gov, NCT04650399. FINDINGS: Between Feb 14, 2022, and March 14, 2023, 754 participants received a trial vaccination (502 received VLA1553 and 252 received placebo) with a per-protocol population of 351 participants for immunogenicity analyses (303 in the VLA1553 group and 48 in the placebo group). In participants who were seronegative at baseline, VLA1553 induced seroprotective chikungunya virus neutralising antibody levels in 247 of 250 (98·8%, 95% CI 96·5-99·8) participants 28 days after vaccination. In seropositive participants, the baseline seroprotection rate of 96·2% increased to 100% after vaccination with VLA1553. Most (365 [93%] of 393) adverse events were of mild or moderate intensity, VLA1553 was generally well tolerated. When compared with placebo, participants exposed to VLA1553 had a significantly higher frequency of related adverse events (351 [69·9%] of 502 vs 121 [48·0%] of 252; p<0·0001), mostly headache, myalgia, fatigue, and fever. Among four reported serious adverse events (three in the VLA1553 group and one in the placebo group), one was classified as possibly related to VLA1553: a high-grade fever. Among 20 adverse events of special interest (ie, symptoms suggesting chikungunya-like disease), 16 were classified as related to trial vaccination (15 in the VLA1553 group and one in the placebo group), with severe symptoms reported in four participants (fever, headache, or arthralgia). 17 adverse events of special interest resolved within 1 week. Among 85 participants with arthralgia (68 in the VLA1553 group and 17 in the placebo group), eight adolescents had short-lived (range 1-5 days), mostly mild recurring episodes (seven in the VLA1553 group and one in the placebo group). The median duration of arthralgia was 1 day (range 1-5 days). The frequency of injection site adverse events for VLA1553 was higher than in the placebo group (161 [32%] vs 62 [25%]), but rarely severe (two [<1%] in the VLA1553 group and one [<1%] in the placebo group). After administration of VLA1553, there was a significantly lower frequency of solicited adverse events in participants who were seropositive at baseline compared with those who were seronegative (53% vs 74%; p<0·0001) including headache, fatigue, fever, and arthralgia. INTERPRETATION: VLA1553 was generally safe and induced seroprotective titres in almost all vaccinated adolescents with favourable safety data in adolescents who were seropositive at baseline. The data support the use of VLA1553 for the prevention of disease caused by the chikungunya virus among adolescents and in endemic areas. FUNDING: Coalition for Epidemic Preparedness Innovation and EU Horizon 2020. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.

3.
bioRxiv ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39229067

RESUMEN

Chikungunya virus (CHIKV) causes severe fever, rash and debilitating joint pain that can last for months1,2or even years. Millions of people have been infected with CHIKV, mostly in low and middle-income countries, and the virus continues to spread into new areas due to the geographical expansion of its mosquito hosts. Its genome encodes a macrodomain, which functions as an ADP-ribosyl hydrolase, removing ADPr from viral and host-cell proteins interfering with the innate immune response. Mutational studies have shown that the CHIKV nsP3 macrodomain is necessary for viral replication, making it a potential target for the development of antiviral therapeutics. We, therefore, performed a high-throughput crystallographic fragment screen against the CHIKV nsP3 macrodomain, yielding 109 fragment hits covering the ADPr-binding site and two adjacent subsites that are absent in the homologous macrodomain of SARS-CoV-2 but may be present in other alphaviruses, such as Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV). Finally, a subset of overlapping fragments was used to manually design three fragment merges covering the adenine and oxyanion subsites. The rich dataset of chemical matter and structural information discovered from this fragment screen is publicly available and can be used as a starting point for developing a CHIKV nsP3 macrodomain inhibitor.

4.
Curr Drug Deliv ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39234913

RESUMEN

Introduction: Chikungunya Virus (CHIKV), a mosquito-transmitted pathogen, poses a significant global health threat owing to its widespread prevalence and high morbidity. There are no approved vaccines or antivirals for prevention or treatment. Screening of folklore medicinal plants has emerged as a promising approach to finding novel therapeutics to combat pathogens. Hence, this study aimed to evaluate the anti-chikungunya potential of folklore medicinal plants and their phytochemicals.

Methods: Maximum non-toxic concentrations (MNTD) of the extracts to Vero cells were determined by the cytotoxicity assay. A Focus-Forming Unit (FFU) assay was used to assess the antiviral activity of the extracts (at MNTD) against CHIKV in Vero cells under pre-, co-, and post-treatment conditions. GC-MS was used to detect the phytochemicals of the extracts, and Schrodinger (Maestro) software was employed for their molecular docking against the target protein of CHIKV.

Results: Azadirachta indica exhibited anti-CHIKV activity during pre- and post-treatment, decreasing the virus titer from 8.145 to 7.998 and 8.361 to 8.040 mean log10 FFU/ml, respectively. Calendula officinalis and Piper retrofractum exhibited anti-CHIKV activity only during post-treatment (8.361 to 8.135, 8.361 to 8.075). Moreover, molecular docking studies of phytochemicals detected in GCMS analysis of all the extracts revealed that many phytochemicals (especially F3, F5, F6, and A1) could bind to the non-structural protein (nSP2) target of CHIKV and suppress the viral replication.

Conclusion: The screened plants showed the ability to inhibit CHIKV infection and replication and hold potential for further investigation in developing treatments for Chikungunya.

5.
J Med Chem ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235978

RESUMEN

Despite their widespread impact on human health, there are no approved drugs for combating alphavirus infections. The heterocyclic ß-aminomethyl vinyl sulfone RA-0002034 (1a) is a potent irreversible covalent inhibitor of the alphavirus nsP2 cysteine protease with broad-spectrum antiviral activity. Analogs of 1a that varied each of the three regions of the molecule were synthesized to establish structure-activity relationships for the inhibition of Chikungunya (CHIKV) nsP2 protease and viral replication. The vinyl sulfone covalent warhead was highly sensitive to modifications. However, alterations to the core five-membered heterocycle and aryl substituent were well tolerated. The 5-(2,5-dimethoxyphenyl)pyrazole (1o) and 4-cyanopyrazole (8d) analogs exhibited kinact/Ki ratios >9000 M-1 s-1. 3-Arylisoxazole (10) was identified as an isosteric replacement for the five-membered heterocycle, which circumvented the intramolecular cyclization of pyrazole-based inhibitors like 1a. A ligand-based model of the enzyme active site was developed to aid the design of nsP2 protease inhibitors as potential therapeutics against alphaviruses.

6.
Curr Microbiol ; 81(10): 343, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227496

RESUMEN

Chikungunya fever is a mosquito-borne disease caused by Chikungunya virus (CHIKV). Treatment of CHIKV infections is currently supportive and does not limit viral replication or symptoms of persistent chronic arthritis. Although there are multiple compounds reported as antivirals active against CHIKV in vitro, there are still no effective and safe antivirals. Thus, active research aims at the identification of new chemical structures with antiviral activity. Here, we report the screen of the Pandemic Response Box library of small molecules against a fully infectious CHIKV reporter virus. Our screening approach successfully identified previously reported CHIKV antiviral compounds within this library and further expanded potentially active hits, supporting the use of reporter-virus-based assays in high-throughput screening format as a reliable tool for antiviral drug discovery. Four molecules were identified as potential drug candidates against CHIKV: MMV1634402 (Brilacidin) and MMV102270 (Diphyllin), which were previously shown to present broad-spectrum antiviral activities, in addition to MMV1578574 (Eravacycline), and the antifungal MMV689401 (Fluopicolide), for which their antiviral potential is uncovered here.


Asunto(s)
Antivirales , Fiebre Chikungunya , Virus Chikungunya , Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas , Virus Chikungunya/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Fiebre Chikungunya/tratamiento farmacológico , Fiebre Chikungunya/virología , Humanos , Animales , Bibliotecas de Moléculas Pequeñas/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Evaluación Preclínica de Medicamentos , Replicación Viral/efectos de los fármacos , Descubrimiento de Drogas , Chlorocebus aethiops , Células Vero
7.
SAGE Open Med ; 12: 20503121241276557, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263636

RESUMEN

Objective: Chikungunya is a disease caused by Aedes mosquito-borne chikungunya virus infection. This disease is becoming one of the emerging/re-emerging viral diseases in tropical and subtropical countries but is neglected by public health systems. This study assessed the seroprevalence of chikungunya virus infection among patients with acute febrile illness seeking healthcare in a malaria-endemic area in the Afar Region, Northeast Ethiopia. Methods: An institution-based cross-sectional study was employed from September 2022 to March 2023 to assess the seroprevalence of chikungunya virus infection among malaria-suspected febrile patients attending health institutes in the Afar Region. Sociodemographic, clinical features, and venous blood were collected from each study participant. Blood films were prepared and examined for plasmodium infection using microscopy. Sera were separated and screened for anti-chikungunya virus IgM and IgG antibodies using an enzyme-linked immunosorbent assay. Data were entered into Epi Data 3.1 and analyzed using Stata/SE 14.2. Results: In this study, 368 malaria-suspected febrile patients (55.4% female, aged 5-80 years old, mean ± SD = 27.28 ± 14.0) participated. The prevalence of anti-chikungunya virus IgM antibodies, indicating acute infection, was 47.8%, while the prevalence of IgG antibodies, indicating previous exposure, was 6.3%. Nonmarried participants were found to be more likely to have acute chikungunya virus infection (AOR = 2.34, 95% CI: 1.141-4.964), and back pain was associated with higher likelihood of acute infection (AOR = 1.785; 95% CI: 1.078-2.954). About 10.6% of the participants tested positive for Plasmodium parasite infection, with P. falciparum (84.6%) being the most common, followed by P. vivax (10.3%) and mixed (5.1%) infections. Conclusion: The study revealed a high seroprevalence of acute chikungunya virus infection among febrile patients in the Afar Region, highlighting the importance of regular screening for arbovirus infection in febrile patients to control and mitigate chikungunya spread.

8.
Sci Rep ; 14(1): 21546, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39278957

RESUMEN

The current detection method for Chikungunya Virus (CHIKV) involves an invasive and costly molecular biology procedure as the gold standard diagnostic method. Consequently, the search for a non-invasive, more cost-effective, reagent-free, and sustainable method for the detection of CHIKV infection is imperative for public health. The portable Fourier-transform infrared coupled with Attenuated Total Reflection (ATR-FTIR) platform was applied to discriminate systemic diseases using saliva, however, the salivary diagnostic application in viral diseases is less explored. The study aimed to identify unique vibrational modes of salivary infrared profiles to detect CHIKV infection using chemometrics and artificial intelligence algorithms. Thus, we intradermally challenged interferon-gamma gene knockout C57/BL6 mice with CHIKV (20 µl, 1 X 105 PFU/ml, n = 6) or vehicle (20 µl, n = 7). Saliva and serum samples were collected on day 3 (due to the peak of viremia). CHIKV infection was confirmed by Real-time PCR in the serum of CHIKV-infected mice. The best pattern classification showed a sensitivity of 83%, specificity of 86%, and accuracy of 85% using support vector machine (SVM) algorithms. Our results suggest that the salivary ATR-FTIR platform can discriminate CHIKV infection with the potential to be applied as a non-invasive, sustainable, and cost-effective detection tool for this emerging disease.


Asunto(s)
Algoritmos , Inteligencia Artificial , Fiebre Chikungunya , Virus Chikungunya , Saliva , Animales , Saliva/virología , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/virología , Virus Chikungunya/aislamiento & purificación , Virus Chikungunya/genética , Ratones , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Ratones Endogámicos C57BL , Ratones Noqueados
9.
Lancet Microbe ; : 100911, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39278232

RESUMEN

BACKGROUND: The global distribution and prevalence of arboviral diseases have increased in recent years, driven by factors such as climate change, biodiversity loss, globalisation, and urbanisation. These diseases are often underestimated due to uneven surveillance and unreported asymptomatic cases. Current surveillance relies on vector and clinical surveillance. In this study, we aimed to explore wastewater-based surveillance (WBS) as an additional tool for dengue virus (DENV) and chikungunya virus (CHIKV) tracking. METHODS: In this exploratory surveillance study, WBS was done at eleven wastewater treatment plants in three regions in Portugal (North, Lisboa and Vale do Tejo, and south). Using quantitative RT-PCR, we quantified in raw wastewater the RNA concentrations of DENV and CHIKV (non-structural viral protein 1 [nsP1] and envelope protein [E1] genes) once every 2 weeks for a period of 11 months, between May 16, 2022, and April 19, 2023. Results were normalised with crAssphage (concentration of target viral RNA divided by the concentration of crAssphage DNA) and provided as median normalised viral load. Prevalence (proportion of positive samples) and viral quantities were summarised for the total sampling period, by calendar month, and by seasons. FINDINGS: 273 samples were collected from 11 wastewater treatment plants situated across the North (n=75 samples), Lisboa and Vale do Tejo (n=98), and south (n=100) regions of Portugal. DENV was detected in 68 (25%) of 273 samples, with a median viral load of 1·1 × 10-4 (IQR 3·2 × 10-5 to 8·0 × 10-4). CHIKV was detected in 30 (11%) of 273 samples, with median viral loads of 3·1 × 10-4 (1·6 × 10-4 to 6·4 × 10-4; nsP1 gene) and 7·8 × 10-4 (4·2 × 10-4 to 2·0 × 10-³; E1 gene). The pattern of occurrence of CHIKV was similar between regions whereas slight differences were found for DENV. When combining results for the three studied regions, DENV prevalence and viral load had two seasonal peaks (summer and winter) and CHIKV prevalence and viral load had a single peak during March and April of 2023. INTERPRETATION: This study highlights the potential of WBS as a potent tool for gauging the epidemiological landscape of DENV and CHIKV in Portugal, where autochthonous cases have not yet been detected. WBS could serve as an additional element to conventional surveillance approaches, especially in areas where real-time clinical surveillance data are scarce or delayed. FUNDING: EU Emergency Support Instrument and Fundação para a Ciencia e Tecnologia.

10.
Eur J Med Chem ; 278: 116808, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39236495

RESUMEN

Chikungunya virus (CHIKV) is responsible for the most endemic alphavirus infections called Chikungunya. The endemicity of Chikungunya has increased over the past two decades, and it is a pathogen with pandemic potential. There is currently no approved direct-acting antiviral to treat the disease. As part of our antiviral drug discovery program focused on alphaviruses and the non-structural protein 2 protease, we discovered that J12 and J13 can inhibit CHIKV nsP2 protease and block the replication of CHIKV in cell cultures. Both compounds are metabolically stable to human liver microsomal and S9 enzymes. J13 has excellent oral bioavailability in pharmacokinetics studies in mice and ameliorated Chikungunya symptoms in preliminary efficacy studies in mice. J13 exhibited an excellent safety profile in in vitro safety pharmacology and off-target screening assays, making J13 and its analogs good candidates for drug development against Chikungunya.


Asunto(s)
Antivirales , Fiebre Chikungunya , Virus Chikungunya , Modelos Animales de Enfermedad , Animales , Virus Chikungunya/efectos de los fármacos , Ratones , Fiebre Chikungunya/tratamiento farmacológico , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Humanos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/síntesis química , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Estructura Molecular , Cisteína Endopeptidasas/metabolismo , Microsomas Hepáticos/metabolismo , Replicación Viral/efectos de los fármacos
11.
EMBO J ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261662

RESUMEN

Despite their role as innate sentinels, macrophages can serve as cellular reservoirs of chikungunya virus (CHIKV), a highly-pathogenic arthropod-borne alphavirus that has caused large outbreaks among human populations. Here, with the use of viral chimeras and evolutionary selection analysis, we define CHIKV glycoproteins E1 and E2 as critical for virion production in THP-1 derived human macrophages. Through proteomic analysis and functional validation, we further identify signal peptidase complex subunit 3 (SPCS3) and eukaryotic translation initiation factor 3 subunit K (eIF3k) as E1-binding host proteins with anti-CHIKV activities. We find that E1 residue V220, which has undergone positive selection, is indispensable for CHIKV production in macrophages, as its mutation attenuates E1 interaction with the host restriction factors SPCS3 and eIF3k. Finally, we show that the antiviral activity of eIF3k is translation-independent, and that CHIKV infection promotes eIF3k translocation from the nucleus to the cytoplasm, where it associates with SPCS3. These functions of CHIKV glycoproteins late in the viral life cycle provide a new example of an intracellular evolutionary arms race with host restriction factors, as well as potential targets for therapeutic intervention.

12.
Pediatr Infect Dis J ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264193

RESUMEN

OBJECTIVES: To monitor by the first 24 months of life, children born to mothers with laboratory evidence of chikungunya virus (CHIKV) infection during pregnancy or up to 8 weeks before it, and to describe abnormalities in head circumference (HC), auditory and ophthalmological assessments and neuroimaging tests during the follow-up period. METHOD: This is a observational, descriptive, longitudinal and prospective study of children born to mothers who had a rash and a positive test for CHIKV during pregnancy or up to 8 weeks before it. They were admitted between November 2015 and May 2019 in the outpatient multidisciplinary clinic to investigate acute exanthematous disease. The exposed children were followed up by a multidisciplinary team and underwent periodic measurements of the HC. The Denver II test was applied, in addition to transfontanellar ultrasound (TU) to evaluate neurodevelopmental outcomes during the study period. Ophthalmological and auditory examinations, echocardiography and laboratory tests were also included. RESULTS: We included in the study 27 children vertically exposed to CHIKV. All children had a negative polymerase chain reaction test for the virus collected at the first outpatient visit (mean age of 16.8 days and standard deviation of 8 days). No clinical condition compatible with congenital infection at birth was reported. A change in HC characterized by macrocephaly and mild global delay development was observed in a 1-year-old child whose mother was infected in the peripartum, but with normal TU. Changes in the TU were observed in 2 other children with nonspecific subependymal cystic malformation that was not evident by the cranial computed tomography. The other children monitored showed normal results in the Denver II test, in the HC and TU. No changes were identified on ocular ophthalmoscopy or auditory brainstem response test. Two children had an increase in serum ferritin levels during the first year of life, with the others' inflammatory disease markers normal. CONCLUSIONS: Our study added knowledge about the neurodevelopment of children exposed to CHIKV during pregnancy by a longitudinal and prospective follow-up, throughout their first 24 months of life. We did not observe a negative impact of exposure to the virus on the neurological examination, global developmental test or measurements of the HC of these children.

13.
J Travel Med ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255380

RESUMEN

BACKGROUND: Over the past 20 years, over 5 million cases of chikungunya, a mosquito-transmitted viral disease, have been reported in over 110 countries. Until recently, preventative strategies for chikungunya were largely ineffective, relying on vector control and individual avoidance of mosquito bites. METHODS: This review outlines the preclinical and clinical efficacy and safety data that led to the approval of VLA1553 (IXCHIQ®), a live-attenuated vaccine against chikungunya disease. It also describes the innovative development pathway of VLA1553, based on an immunological surrogate of protection, and discusses ongoing and future post-licensure studies. RESULTS: In mice and non-human primate models, VLA1553 elicited high titres of neutralizing antibodies, conferred protection against wild-type chikungunya virus challenge and raised no safety concerns. A Phase 1 clinical trial of VLA1553 demonstrated 100% seroconversion among 120 healthy participants, with sustained neutralizing antibody titres after 12 months. These results and determination of a surrogate marker of protection led to advancement of VLA1553 directly into Phase 3 clinical development, as agreed with the US Food and Drug Administration (FDA) and the European Medicines Agency. The pivotal Phase 3 trial met its primary immunogenicity endpoint, achieving seroprotective levels based on immuno-bridging in baseline seronegative participants 28 days post-vaccination. These findings enabled submission of a Biologics License Application to the FDA for accelerated approval of VLA1553 in the US for adults aged ≥18 years. Ongoing and planned studies will confirm the clinical efficacy/effectiveness and safety of VLA1553 in adults and younger individuals, and will generate data in chikungunya endemic countries that have the highest unmet need. CONCLUSION: VLA1553 is the first vaccine approved for the prevention of chikungunya disease in adults, following accelerated development based on a serological surrogate marker of protection. VLA1553 adds to strategies to reduce the spread and burden of chikungunya in endemic populations and travellers.

14.
Nat Commun ; 15(1): 8106, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285216

RESUMEN

Alphaviruses, such as chikungunya virus (CHIKV), are mosquito-borne viruses that represent a significant threat to human health due to the current context of global warming. Efficient alphavirus infection relies on the activity of the non-structural protein 3 (nsP3), a puzzling multifunctional molecule whose role in infection remains largely unknown. NsP3 is a component of the plasma membrane-bound viral RNA replication complex (vRC) essential for RNA amplification and is also found in large cytoplasmic aggregates of unknown function. Here, we report the cryo-electron microscopy (cryo-EM) structure of the CHIKV nsP3 at 2.35 Å resolution. We show that nsP3 assembles into tubular structures made by a helical arrangement of its alphavirus unique domain (AUD). The nsP3 helical scaffolds are consistent with crown structures found on tomographic reconstructions of the mature viral RCs. In addition, nsP3 helices assemble into cytoplasmic granules organized in a network of tubular structures that contain viral genomic RNA and capsid as well as host factors required for productive infection. Structure-guided mutagenesis identified residues that prevent or disturb nsP3 assemblies, resulting in impaired viral replication or transcription. Altogether, our results reveal an unexpected nsP3-dependent molecular organization essential for different phases of alphavirus infection.


Asunto(s)
Virus Chikungunya , Microscopía por Crioelectrón , Gránulos Citoplasmáticos , ARN Viral , Proteínas no Estructurales Virales , Replicación Viral , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/química , Virus Chikungunya/genética , Virus Chikungunya/metabolismo , Virus Chikungunya/fisiología , Humanos , Animales , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , ARN Viral/metabolismo , ARN Viral/genética , Alphavirus/genética , Alphavirus/metabolismo , Alphavirus/fisiología , Alphavirus/ultraestructura , Chlorocebus aethiops , Modelos Moleculares
15.
Virulence ; 15(1): 2401985, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39263937

RESUMEN

Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF), and its primary vectors are the mosquitoes Aedes aegypti and Aedes albopictus. CHIKV was initially endemic to Africa but has spread globally in recent years and affected millions of people. According to a risk assessment by the World Health Organization, CHIKV has the potential seriously impact public health. A growing body of research suggests that mutations in the CHIKV gene that enhance viral fitness in the host are contributing to the expansion of the global CHIKF epidemic. In this article, we review the host-adapted gene mutations in CHIKV under natural evolution and laboratory transmission conditions, which can help improve our understanding of the adaptive evolution of CHIKV and provide a basis for monitoring and early warning of future CHIKV outbreaks.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Genoma Viral , Mutación , Virus Chikungunya/genética , Fiebre Chikungunya/virología , Fiebre Chikungunya/transmisión , Animales , Humanos , Aedes/virología , Aedes/genética , Mosquitos Vectores/virología , Mosquitos Vectores/genética , Adaptación al Huésped/genética
16.
Pediatr Infect Dis J ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230282

RESUMEN

Chikungunya virus (CHIKV), transmitted by Aedes mosquitoes, has reemerged in Southeast Asia since 2019. A retrospective review of CHIKV cases was conducted. Children commonly presented with high-grade fever, rash, arthralgia, and lymphopenia. Neurological manifestations or shock occurred in 20% of hospitalized children. These findings indicate the need for increased vigilance for CHIKV alongside dengue in travelers from Southeast Asia with suspected mosquito-borne viral infections.

17.
Microbiome ; 12(1): 161, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39223641

RESUMEN

BACKGROUND: Many studies have demonstrated the association between intestinal microbiota and joint diseases. The "gut-joint axis" also has potential roles in chikungunya virus (CHIKV) infection. Pro-inflammatory arthritis after CHIKV infection might disrupt host homeostasis and lead to dysbacteriosis. This study investigated the characteristics of fecal and gut microbiota, intestinal metabolites, and the changes in gene regulation of intestinal tissues after CHIKV infection using multi-omics analysis to explore the involvement of gut microbiota in the pathogenesis of CHIKV infection. RESULTS: CHIKV infection increases the systemic burden of inflammation in the GI system of infected animals. Moreover, infection-induced alterations in GI microbiota and metabolites may be indirectly involved in the modulation of GI and bone inflammation after CHIKV infection, including the modulation of inflammasomes and interleukin-17 inflammatory cytokine levels. CONCLUSION: Our results suggest that the GI tract and its microbes are involved in the modulation of CHIKV infection, which could serve as an indicator for the adjuvant treatment of CHIKV infection. Video Abstract.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Heces , Microbioma Gastrointestinal , Macaca mulatta , Animales , Heces/microbiología , Fiebre Chikungunya/virología , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Disbiosis/microbiología , Inflamación , Inflamasomas/metabolismo , Modelos Animales de Enfermedad , Interleucina-17/metabolismo , Tracto Gastrointestinal/microbiología , Citocinas/metabolismo
18.
Braz J Microbiol ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39222222

RESUMEN

OBJECTIVES: The co-circulation of Chikungunya virus (CHIKV) and Dengue virus (DENV) in India poses a challenge for the diagnosing clinician, as they share similar clinical signs and symptoms and geographical distribution. Both arthropod-borne viruses are maintained in the environment by the Aedes mosquito, commonly found in tropical countries including India. Here we aim to investigate the clinical and laboratory aspects of Chikungunya/Dengue suspected cases in Punjab, India during 2021-2022, focusing on the differential diagnosis of Dengue. METHODS: All suspected cases were submitted to serological differential diagnosis approaches to arboviruses like Chikungunya and Dengue. For the detection of Chikungunya Infection, CHIK IgM Capture ELISA was employed. Whereas, for Dengue NS1 antigen ELISA and IgM Capture ELISA assays were employed. RESULTS: A total of 370 cases suspected of arboviral infection were investigated and 38.3% (142/370) were confirmed as Chikungunya. Chikungunya cases were slightly more prevalent in males (54%) and the most frequently affected age group was adults between 16 and 30 years old (45.7%). Polyarthralgia affected 79.5% of patients, 63.3% exhibited headache and 50% presented with retro-orbital pain. 28.9% (107/370) had serological evidence of DENV exposure by detection of specific anti-DENV IgM or NS1 and 9.1% (34/370) cases of co-detection of Chikungunya and Dengue were reported. Urban populations had a higher infection rate of co-detection of Chikungunya and Dengue than rural populations with 83% versus 17%, respectively. CONCLUSIONS: Despite an initial clinical diagnosis of Dengue, most patients with fever and arthralgia were serologically confirmed as Chikungunya cases, with a notable prevalence of CHIKV/DENV co-detection. Strengthening differential diagnosis of circulating arboviruses is crucial for improving patient care and enhancing vector control and environmental management strategies.

19.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39201595

RESUMEN

Chikungunya (CHIKV) and Mayaro (MAYV) viruses are arthritogenic alphaviruses that promote an incapacitating and long-lasting inflammatory muscle-articular disease. Despite studies pointing out the importance of skeletal muscle (SkM) in viral pathogenesis, the long-term consequences on its physiology and the mechanism of persistence of symptoms are still poorly understood. Combining molecular, morphological, nuclear magnetic resonance imaging, and histological analysis, we conduct a temporal investigation of CHIKV and MAYV replication in a wild-type mice model, focusing on the impact on SkM composition, structure, and repair in the acute and late phases of infection. We found that viral replication and induced inflammation promote a rapid loss of muscle mass and reduction in fiber cross-sectional area by upregulation of muscle-specific E3 ubiquitin ligases MuRF1 and Atrogin-1 expression, both key regulators of SkM fibers atrophy. Despite a reduction in inflammation and clearance of infectious viral particles, SkM atrophy persists until 30 days post-infection. The genomic CHIKV and MAYV RNAs were still detected in SkM in the late phase, along with the upregulation of chemokines and anti-inflammatory cytokine expression. In agreement with the involvement of inflammatory mediators on induced atrophy, the neutralization of TNF and a reduction in oxidative stress using monomethyl fumarate, an agonist of Nrf2, decreases atrogen expression and atrophic fibers while increasing weight gain in treated mice. These data indicate that arthritogenic alphavirus infection could chronically impact body SkM composition and also harm repair machinery, contributing to a better understanding of mechanisms of arthritogenic alphavirus pathogenesis and with a description of potentially new targets of therapeutic intervention.


Asunto(s)
Virus Chikungunya , Músculo Esquelético , Atrofia Muscular , Estrés Oxidativo , Animales , Atrofia Muscular/virología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Ratones , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/virología , Fiebre Chikungunya/patología , Fiebre Chikungunya/virología , Fiebre Chikungunya/metabolismo , Inflamación/patología , Inflamación/metabolismo , Inflamación/virología , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Replicación Viral , Ratones Endogámicos C57BL , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Infecciones por Alphavirus/virología , Infecciones por Alphavirus/patología , Infecciones por Alphavirus/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Modelos Animales de Enfermedad , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
20.
Lancet Infect Dis ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39146946

RESUMEN

BACKGROUND: Chikungunya virus infection can lead to long-term debilitating symptoms. A precursor phase 3 clinical study showed high seroprotection (defined as a 50% plaque reduction of chikungunya virus-specific neutralising antibodies on a micro plaque reduction neutralisation test [µPRNT] titre of ≥150 in baseline seronegative participants) up to 6 months after a single vaccination of the chikungunya virus vaccine VLA1553 (Valneva Austria, Vienna, Austria) and a good safety profile. Here we report antibody persistence and safety up to 2 years. METHODS: In this single-arm, multicentre, phase 3b study, we recruited participants from the precursor phase 3 trial from professional vaccine trial sites in the USA. Participants (aged ≥18 years) were eligible if they had completed the previous study and received VLA1553. Chikungunya virus-specific neutralising antibodies were evaluated at 28 days, 6 months, and 1 year and 2 years after vaccination. The primary outcome was the proportion of seroprotected participants (ie, µPRNT50 titre of ≥150) at 1 and 2 years, assessed in all eligible participants who had at least one post-vaccination immunogenicity sample available, overall and by age group at the time of vaccination (18-64 years and ≥65 years). Adverse events of special interest at the time of transition from the previous study to the current study (ie, at 6 months) and serious adverse events during the current study were recorded (ie, between 6 months and 2 years). All analyses were descriptive. This study is registered with ClinicalTrials.gov, NCT04838444, and immunogenicity follow-up is ongoing. FINDINGS: In the precursor study, participants were screened between Sept 17, 2020, and April 10, 2021; data cutoff for this analysis was March 31, 2023. Of 2724 participants in the precursor study who received one dose of VLA1553, 363 participants were analysed in this study (310 [85%] aged 18-64 years and 53 [15%] aged ≥65 years at enrolment in the precursor study; mean age 47·7 years [SD 14·2], 207 [57%] of 363 participants were female, 156 [43%] were male, 280 [77%] were White, and 314 [87%] were not Hispanic or Latino). Strong seroprotection was observed at 1 year (98·9% [356 of 360 assessable participants; 97·2-99·7]) and 2 years (96·8% [306 of 316; 94·3-98·5]) after vaccination, and was very similar between those aged 18-64 years (at 1 year: 98·7% [303 of 307; 96·7-99·6]; at 2 years: 96·6% [256 of 265; 93·7-98·4]) and those aged 65 years and older (at 1 year: 100% [53 of 53; 93·3-100]; at 2 years: 98·0% [50 of 51; 89·6-100]) at each timepoint. No adverse events of special interest were ongoing at the time of transition. Ten serious adverse events occurred in nine (2%) participants between the 6-month and 2-year timepoints, including one death (due to drug overdose) that was determined to not be related to VLA1553. INTERPRETATION: After a single VLA1553 vaccination, chikungunya virus-neutralising antibodies above the threshold considered to be protective persisted up to 2 years and there were no long-term serious adverse events related to vaccination. VLA1553 is an efficient and safe intervention that offers high seroprotection against chikungunya virus infection, a virus likely to spread globally with an urgent demand for long-lasting prophylaxis. FUNDING: Valneva Austria, Coalition for Epidemic Preparedness Innovation, and EU Horizon 2020.

21.
Virulence ; 15(1): 2396484, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39193780

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Virus Chikungunya/patogenicidad , Virus Chikungunya/genética , Fiebre Chikungunya/virología , Fiebre Chikungunya/epidemiología , Animales , Virulencia , Mosquitos Vectores/virología , Interacciones Huésped-Patógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA