Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.808
Filter
1.
Sci Rep ; 14(1): 21327, 2024 09 12.
Article in English | MEDLINE | ID: mdl-39266587

ABSTRACT

Dengue, a zoonotic viral disease transmitted by Aedes mosquitoes, poses a significant public health concern throughout the Lao People's Democratic Republic (Lao PDR). This study aimed to describe spatial-temporal patterns and quantify the effects of environmental and climate variables on dengue transmission at the district level. The dengue data from 2015 to 2020 across 148 districts of Lao PDR were obtained from the Lao PDR National Center for Laboratory and Epidemiology (NCLE). The association between monthly dengue occurrences and environmental and climate variations was investigated using a multivariable Zero-inflated Poisson regression model developed in a Bayesian framework. The study analyzed a total of 72,471 dengue cases with an incidence rate of 174 per 100,000 population. Each year, incidence peaked from June to September and a large spike was observed in 2019. The Bayesian spatio-temporal model revealed a 9.1% decrease (95% credible interval [CrI] 8.9%, 9.2%) in dengue incidence for a 0.1 unit increase in monthly normalized difference vegetation index at a 1-month lag and a 5.7% decrease (95% CrI 5.3%, 6.2%) for a 1 cm increase in monthly precipitation at a 6-month lag. Conversely, dengue incidence increased by 43% (95% CrI 41%, 45%) for a 1 °C increase in monthly mean temperature at a 3-month lag. After accounting for covariates, the most significant high-risk spatial clusters were detected in the southern regions of Lao PDR. Probability analysis highlighted elevated trends in 45 districts, emphasizing the importance of targeted control strategies in high-risk areas. This research underscores the impact of climate and environmental factors on dengue transmission, emphasizing the need for proactive public health interventions tailored to specific contexts in Lao PDR.


Subject(s)
Aedes , Bayes Theorem , Dengue , Spatio-Temporal Analysis , Dengue/epidemiology , Dengue/transmission , Laos/epidemiology , Humans , Incidence , Aedes/virology , Animals , Mosquito Vectors/virology , Seasons , Climate
2.
PLoS Negl Trop Dis ; 18(9): e0012397, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39264869

ABSTRACT

BACKGROUND: Seasonal fluctuations in weather are recognized as factors that affect both Aedes (Ae.) aegypti mosquitoes and the diseases they carry, such as dengue fever. The El Niño-Southern Oscillation (ENSO) is widely regarded as one of the most impactful atmospheric phenomena on Earth, characterized by the interplay of shifting ocean temperatures, trade wind intensity, and atmospheric pressure, resulting in extensive alterations in climate conditions. In this study, we investigate the influence of ENSO and local weather conditions on the spatio-temporal variability of Ae. aegypti infestation index. METHODS: We collected seasonal entomological survey data of immature forms of Ae. aegypti mosquitoes (Breteau index), as well as data on temperature, rainfall and the Oceanic Niño Index (ONI) for the period 2008-2018 over the 645 municipalities of the subtropical State of São Paulo (Brazil). We grounded our analytical approach on a Bayesian framework and we used a hierarchical spatio-temporal model to study the relationship between ENSO tracked by ONI, seasonal weather fluctuations and the larval index, while adjusting for population density and wealth inequalities. RESULTS: Our results showed a relevant positive effect for El Niño on the Ae. aegypti larval index. In particular, we found that the number of positive containers would be expected to increase by 1.30-unit (95% Credible Intervals (CI): 1.23 to 1.37) with El Niño events (i.e., ≥ 1°C, moderate to strong) respect to neutral (and weak) events. We also found that seasonal rainfall exceeding 153.12 mm appears to have a notable impact on vector index, leading potentially to the accumulation of ample water in outdoor discarded receptacles, supporting the aquatic phase of mosquito development. Additionally, seasonal temperature above 23.30°C was found positively associated to the larval index. Although the State of São Paulo as a whole has characteristics favourable to proliferation of the vector, there were specific areas with a greater tendency for mosquito infestation, since the most vulnerable areas are predominantly situated in the central and northern regions of the state, with hot spots of abundance in the south, especially during El Niño events. Our findings also indicate that social disparities present in the municipalities contributes to Ae. aegypti proliferation. CONCLUSIONS: Considering the anticipated rise in both the frequency and intensity of El Niño events in the forthcoming decades as a consequence of climate change, the urgency to enhance our ability to track and diminish arbovirus outbreaks is crucial.


Subject(s)
Aedes , Bayes Theorem , Dengue , El Nino-Southern Oscillation , Mosquito Vectors , Seasons , Weather , Animals , Aedes/physiology , Aedes/growth & development , Brazil/epidemiology , Dengue/epidemiology , Dengue/transmission , Mosquito Vectors/physiology , Larva/physiology , Larva/growth & development , Spatio-Temporal Analysis , Temperature
3.
PLoS Negl Trop Dis ; 18(9): e0012482, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39255310

ABSTRACT

BACKGROUND: Climate change and urbanization will alter the global distribution of disease vectors, changing the disease burden in yet unpredictable ways. Aedes aegypti is a mosquito responsible for transmitting dengue, Zika, chikungunya, and yellow fever viruses that breeds in containers associated with urban environments. We sought to understand how ambient temperature and larval densities in the immature aquatic phases determine adult life history traits and dengue virus loads post-infection. We predicted that larval crowding and high temperatures would both lead to smaller mosquitoes that might struggle to invest in an immune response and, hence, would exhibit high viral loads. METHODS: We first examined larval densities from urban and rural areas via a meta-analysis. We then used these data to inform a laboratory-based 2x2 design examining the interacting effects of temperature (21 vs. 26°C) and density (0.2 vs. 0.4 larvae/mL) on adult life history and dengue virus loads. RESULTS: We found that urban areas had an ~8-fold increase in larval densities compared to more rural sites. In the lab, we found that crowding had more impact on mosquito traits than temperature. Crowding led to slower development, smaller mosquitoes, less survival, lower fecundity, and higher viral loads, as predicted. The higher temperature led to faster development, reduced fecundity, and lower viral loads. The virus-reducing effect of higher temperature rearing was, however, overwhelmed by the impact of larval crowding when both factors were present. CONCLUSIONS: These data reveal complex interactions between the environmental effects experienced by immature mosquitoes and adult traits. They especially highlight the importance of crowding with respect to adult viral loads. Together, these data suggest that urban environments might enhance dengue virus loads and, therefore, possibly transmission, a concerning result given the increasing rates of urbanization globally.


Subject(s)
Aedes , Dengue Virus , Dengue , Larva , Mosquito Vectors , Viral Load , Aedes/virology , Aedes/physiology , Animals , Dengue Virus/physiology , Larva/virology , Dengue/transmission , Dengue/virology , Mosquito Vectors/virology , Mosquito Vectors/physiology , Mosquito Vectors/growth & development , Temperature , Female , Crowding , Humans
4.
PLoS One ; 19(9): e0310635, 2024.
Article in English | MEDLINE | ID: mdl-39298440

ABSTRACT

Dengue virus (DENV) is the most prevalent mosquito-borne Flavivirus that affects humans worldwide. Aedes albopictus, which is naturally infected with the bacteria Wolbachia, is considered to be a secondary vector of DENV. However, it was responsible for a recent DENV outbreak of unprecedented magnitude in Reunion Island, a French island in the South West Indian Ocean. Moreover, the distribution of the cases during this epidemic showed a spatially heterogeneous pattern across the island, leading to questions about the differential vector competence of mosquito populations from different geographic areas. The aim of this study was to gain a better understanding of the vector competence of the Ae. albopictus populations from Reunion Island for local DENV epidemic strains, while considering their infection by Wolbachia. Experimental infections were conducted using ten populations of Ae. albopictus sampled across Reunion Island and exposed to three DENV strains: one strain of DENV serotype 1 (DENV-1) and two strains of DENV serotype 2 (DENV-2). We analyzed three vector competence parameters including infection rate, dissemination efficiency and transmission efficiency, at different days post-exposition (dpe). We also assessed whether there was a correlation between the density of Wolbachia and viral load/vector competence parameters. Our results show that the Ae. albopictus populations tested were not able to transmit the two DENV-2 strains, while transmission efficiencies up to 40.79% were observed for the DENV-1 strain, probably due to difference in viral titres. Statistical analyses showed that the parameters mosquito population, generation, dpe and area of sampling significantly affect the transmission efficiencies of DENV-1. Although the density of Wolbachia varied according to mosquito population, no significant correlation was found between Wolbachia density and either viral load or vector competence parameters for DENV-1. Our results highlight the importance of using natural mosquito populations for a better understanding of transmission patterns of dengue.


Subject(s)
Aedes , Dengue Virus , Dengue , Mosquito Vectors , Wolbachia , Animals , Aedes/virology , Aedes/microbiology , Dengue Virus/physiology , Wolbachia/physiology , Dengue/transmission , Dengue/epidemiology , Dengue/virology , Reunion/epidemiology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Viral Load , Humans , Insect Vectors/virology , Insect Vectors/microbiology , Female
5.
Nat Commun ; 15(1): 8221, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300135

ABSTRACT

The main vectors of Zika virus (ZIKV) and dengue virus (DENV) are Aedes aegypti and Ae. albopictus, with Ae. aegypti being more competent. However, the underlying mechanisms remain unclear. Here, we find Ae. albopictus shows comparable vector competence to ZIKV/DENV with Ae. aegypti by blood-feeding after antibiotic treatment or intrathoracic injection. This suggests that midgut microbiota can influence vector competence. Enterobacter hormaechei_B17 (Eh_B17) is isolated from field-collected Ae. albopictus and conferred resistance to ZIKV/DENV infection in Ae. aegypti after gut-transplantation. Sphingosine, a metabolite secreted by Eh_B17, effectively suppresses ZIKV infection in both Ae. aegypti and cell cultures by blocking viral entry during the fusion step, with an IC50 of approximately 10 µM. A field survey reveals that Eh_B17 preferentially colonizes Ae. albopictus compared to Ae. aegypti. And field Ae. albopictus positive for Eh_B17 are more resistant to ZIKV infection. These findings underscore the potential of gut symbiotic bacteria, such as Eh_B17, to modulate the arbovirus vector competence of Aedes mosquitoes. As a natural antiviral agent, Eh_B17 holds promise as a potential candidate for blocking ZIKV/DENV transmission.


Subject(s)
Aedes , Dengue Virus , Enterobacter , Gastrointestinal Microbiome , Mosquito Vectors , Sphingosine , Symbiosis , Zika Virus , Aedes/virology , Aedes/microbiology , Aedes/drug effects , Animals , Mosquito Vectors/microbiology , Mosquito Vectors/virology , Mosquito Vectors/drug effects , Zika Virus/physiology , Zika Virus/drug effects , Dengue Virus/drug effects , Dengue Virus/physiology , Gastrointestinal Microbiome/drug effects , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine/pharmacology , Enterobacter/drug effects , Enterobacter/physiology , Zika Virus Infection/transmission , Zika Virus Infection/virology , Dengue/transmission , Dengue/virology , Dengue/prevention & control , Female , Virus Internalization/drug effects , Humans
6.
Parasit Vectors ; 17(1): 375, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232769

ABSTRACT

BACKGROUND: C-type lectins (CTLs) are a large family of proteins with sugar-binding activity. CTLs contain an evolutionarily conserved C-type lectin domain (CTLD) that binds microbial carbohydrates in a calcium-dependent manner, thereby playing a key role in both microbial pathogenesis and innate immune responses. Aedes albopictus is an important vector for transmitting dengue virus (DENV) worldwide. Currently, the molecular characteristics and functions of CTLs in Ae. albopictus are largely unknown. METHODS: Transcripts encoding CTL proteins in the Ae. albopictus genome assembly were analyzed via sequence blast. Phylogenetic analysis and molecular characterization were performed to identify the functional domains of the CTLs. Quantitative analysis was performed to determine the gene expression features of CTLs during mosquito development and in different tissues of female adults after blood feeding. In addition, the functional role of CTLs in response to DENV infection was investigated in Ae. albopictus mosquito cells. RESULTS: We identified 39 transcripts encoding CTL proteins in the Ae. albopictus transcriptome. Aedes albopictus CTLs are classified into three groups based on the number of CTLDs and the domain architecture. These included 29 CTL-Ss (single-CTLDs), 1 immulectins (dual-CTLD) and 9 CTL-Xs (CTLDs with other domains). Phylogenetic analysis and structural modeling indicated that CTLs in Ae. albopictus are highly conserved with the homologous CTLs in Aedes aegypti. The expression profile assay revealed differential expression patterns of CTLs in both developmental stages and in adult female tissues. Knockdown and overexpression of three CTLs (CTL-S12, S17 and S19) confirmed that they can promote dengue virus infection in Ae. albopictus cells. CONCLUSIONS: The CTL genes in Ae. albopictus mosquito and other mosquito species are evolutionarily conserved and exhibit different developmental and tissue expression features. The functional assay indicated that three CTLs in Ae. albopictus mosquitoes are involved in promoting dengue virus infection. Our study revealed that CTLs play important roles in both the physiological processes and viral infection in mosquito vectors.


Subject(s)
Aedes , Dengue Virus , Lectins, C-Type , Mosquito Vectors , Phylogeny , Aedes/genetics , Aedes/virology , Animals , Dengue Virus/genetics , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Lectins, C-Type/chemistry , Female , Mosquito Vectors/virology , Mosquito Vectors/genetics , Dengue/transmission , Dengue/virology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Transcriptome , Immunity, Innate , Gene Expression Profiling
7.
Virulence ; 15(1): 2401985, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39263937

ABSTRACT

Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF), and its primary vectors are the mosquitoes Aedes aegypti and Aedes albopictus. CHIKV was initially endemic to Africa but has spread globally in recent years and affected millions of people. According to a risk assessment by the World Health Organization, CHIKV has the potential seriously impact public health. A growing body of research suggests that mutations in the CHIKV gene that enhance viral fitness in the host are contributing to the expansion of the global CHIKF epidemic. In this article, we review the host-adapted gene mutations in CHIKV under natural evolution and laboratory transmission conditions, which can help improve our understanding of the adaptive evolution of CHIKV and provide a basis for monitoring and early warning of future CHIKV outbreaks.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Genome, Viral , Mutation , Chikungunya virus/genetics , Chikungunya Fever/virology , Chikungunya Fever/transmission , Animals , Humans , Aedes/virology , Aedes/genetics , Mosquito Vectors/virology , Mosquito Vectors/genetics , Host Adaptation/genetics
8.
J Gen Virol ; 105(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-39302189

ABSTRACT

Rift Valley fever virus (Phlebovirus riftense, RVFV) poses significant economic challenges, particularly in African nations, causing substantial livestock losses and severe haemorrhagic disease in humans. In Europe, the risk of RVFV transmission is deemed moderate due to the presence of competent vectors like Culex pipiens and Aedes albopictus, along with susceptible animal vertebrate hosts across member states. This study investigates RVFV infection dynamics in European mosquito populations, aiming to enhance our understanding of their vectorial capacity and virus transmission, which can be useful for future investigations to improve RVFV surveillance, control programmes, and preventive treatments. Intrathoracic inoculation of European Cx. pipiens and Ae. albopictus with an RVFV virulent strain (RVF 56/74) enabled the assessment of virus tissue distribution and transmission. Immunohistochemistry analyses revealed widespread RVFV infection in all analysable anatomical structures at 5 and 14 days post-inoculation. Notably, the ganglionic nervous system exhibited the highest detection of RVFV in both species. Cx. pipiens showed more frequently infected structures than Ae. albopictus, particularly in reproductive structures. The identification of an RVFV-positive egg follicle in Cx. pipiens hints at potential vertical transmission. Saliva analysis indicated a higher transmission potential in Cx. pipiens (71.4%) compared to Ae. albopictus (4.3%) at the early time point. This study offers the first description and comparison of RVFV tissue distribution in Ae. albopictus and Cx. pipiens, shedding light on the susceptibility of their nervous systems, which may alter mosquito behaviour, which is critical for virus transmission. Overall, enhancing our knowledge of viral infection within mosquitoes holds promise for future vector biology research and innovative approaches to mitigate RVFV transmission.


Subject(s)
Aedes , Culex , Mosquito Vectors , Rift Valley Fever , Rift Valley fever virus , Animals , Aedes/virology , Rift Valley fever virus/physiology , Culex/virology , Mosquito Vectors/virology , Rift Valley Fever/transmission , Rift Valley Fever/virology , Europe , Female
9.
Nat Commun ; 15(1): 8060, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39277600

ABSTRACT

China has experienced successive waves of dengue epidemics over the past decade. Nationwide data on 95,339 dengue cases, 89 surveillance sites for mosquito density and population mobility between 337 cities during 2013-20 were extracted. Weekly dengue time series including time trends and harmonic terms were fitted using seasonal regression models, and the amplitude and peak timing of the annual and semiannual cycles were estimated. A data-driven model-inference approach was used to simulate the epidemic at city-scale and estimate time-evolving epidemiological parameters. We found that the geographical distribution of dengue cases was expanding, and the main imported areas as well as external sources of imported cases changed. Dengue cases were predominantly concentrated in southern China and it exhibited an annual peak of activity, typically peaking in September. The annual amplitude of dengue epidemic varied with latitude (F = 19.62, P = 0.0001), mainly characterizing by large in southern cities and small in northern cities. The effective reproduction number Reff across cities is commonly greater than 1 in several specific months from July to November, further confirming the seasonal fluctuations and spatial heterogeneity of dengue epidemics. The results of this national study help to better informing interventions for future dengue epidemics in China.


Subject(s)
Dengue , Seasons , Dengue/epidemiology , Dengue/transmission , Humans , China/epidemiology , Animals , Aedes/virology , Mosquito Vectors/virology , Epidemics , Dengue Virus , Cities/epidemiology
10.
PLoS One ; 19(9): e0305854, 2024.
Article in English | MEDLINE | ID: mdl-39259718

ABSTRACT

BACKGROUND: Dengue outbreaks are common in tropical or temperate countries, and climate change can exacerbate the problem by creating conditions conducive to the spread of mosquitoes and prolonging the transmission season. Warmer temperatures can allow mosquitoes to mature faster and increase their ability to spread disease. Additionally, changes in rainfall patterns can create more standing water, providing a breeding ground for mosquitoes. OBJECTIVE: The objective of this study is to investigate the correlation between environmental and demographic factors and the dissemination of dengue fever. The study will use yearly data from 2000 to 2021 from 11 countries highly affected by dengue, considering multiple factors such as dengue cases, temperatures, precipitation, and population to better understand the impact of these variables on dengue transmission. METHODS: In this research, Poisson regression (PR) and negative binomial regression (NBR) models are used to model count data and estimate the effect of different predictor variables on the outcome. Also, histogram plots and pairwise correlation plots are used to provide an initial overview of the distribution and relationship between the variables. Moreover, Goodness-of-fit tests, t-test analysis, diagnostic plots, influence plots, and residual vs. leverage plots are used to check the assumptions and validity of the models and identify any outliers or influential observations that may be affecting the results. RESULTS: The findings indicate that mean temperature and log(Urban) had a positive impact on dengue infection rates, while maximum temperature, log(Precipitation), and population density had a negative impact. However, minimum temperature, log(Rural), and log(Total population) did not demonstrate any significant effects on the incidence of dengue. CONCLUSION: The impact of demographic-environmental factors on dengue outbreaks in 11 Asian countries is illuminated by this study. The results highlight the significance of mean temperature (Tmean), maximum temperature (Tmax), log(Urban), log(Precipitation), and population density in influencing dengue incidence rates. However, further research is needed to gain a better understanding of the role of additional variables, such as immunity levels, awareness, and vector control measures, in the spread of dengue.


Subject(s)
Dengue , Disease Outbreaks , Dengue/epidemiology , Dengue/transmission , Humans , Animals , Temperature , Climate Change , Mosquito Vectors/virology , Aedes/virology , Demography , Environment
11.
BMC Infect Dis ; 24(1): 944, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251932

ABSTRACT

BACKGROUND: For decades, dengue has posed a significant threat as a viral infectious disease, affecting numerous human lives globally, particularly in tropical regions, yet no cure has been discovered. The genetic trait of vector competence in Aedes mosquitoes, which facilitates dengue transmission, is difficult to measure and highly sensitive to environmental changes. METHODS: In this study we attempt, for the first time in a non-laboratory setting, to quantify the vector competence of Aedes mosquitoes assuming its homogeneity across both species; aegypti and albopictus and across the four Dengue serotypes. Estimating vector competence in relation to varying rainfall patterns was focused in this study to showcase the changes in this vector trait with respect to environmental variables. We quantify it using an existing mathematical model originally developed for malaria in a Bayesian inferencing setup. We conducted this study in the Colombo district of Sri Lanka where the highest number of human populations are threatened with dengue. Colombo district experiences continuous favorable temperature and humidity levels throughout the year creating ideal conditions for Aedes mosquitoes to thrive and transmit the Dengue disease. Therefore we only used the highly variable and seasonal rainfall as the primary environmental variable as it significantly influences the number of breeding sites and thereby impacting the population dynamics of Aedes. RESULTS: Our research successfully deduced vector competence values for the four identified seasons based on Monsoon rainfalls experienced in Colombo within a year. We used dengue data from 2009 - 2022 to infer the estimates. These estimated values have been corroborated through experimental studies documented in the literature, thereby validating the malaria model to estimate vector competence for dengue disease. CONCLUSION: Our research findings conclude that environmental conditions can amplify vector competence within specific seasons, categorized by their environmental attributes. Additionally, the deduced vector competence offers compelling evidence that it impacts disease transmission, irrespective of geographical location, climate, or environmental factors.


Subject(s)
Aedes , Dengue Virus , Dengue , Mosquito Vectors , Animals , Aedes/virology , Aedes/genetics , Sri Lanka/epidemiology , Dengue/transmission , Dengue/virology , Dengue/epidemiology , Mosquito Vectors/virology , Mosquito Vectors/genetics , Humans , Dengue Virus/genetics , Rain
12.
Nat Commun ; 15(1): 7823, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39242617

ABSTRACT

The incidence of vector-borne disease is on the rise globally, with burdens increasing in endemic countries and outbreaks occurring in new locations. Effective mitigation and intervention strategies require models that accurately predict both spatial and temporal changes in disease dynamics, but this remains challenging due to the complex and interactive relationships between environmental variation and the vector traits that govern the transmission of vector-borne diseases. Predictions of disease risk in the literature typically assume that vector traits vary instantaneously and independently of population density, and therefore do not capture the delayed response of these same traits to past biotic and abiotic environments. We argue here that to produce accurate predictions of disease risk it is necessary to account for environmentally driven and delayed instances of phenotypic plasticity. To show this, we develop a stage and phenotypically structured model for the invasive mosquito vector, Aedes albopictus, and dengue, the second most prevalent human vector-borne disease worldwide. We find that environmental variation drives a dynamic phenotypic structure in the mosquito population, which accurately predicts global patterns of mosquito trait-abundance dynamics. In turn, this interacts with disease transmission to capture historic dengue outbreaks. By comparing the model to a suite of simpler models, we reveal that it is the delayed phenotypic structure that is critical for accurate prediction. Consequently, the incorporation of vector trait relationships into transmission models is critical to improvement of early warning systems that inform mitigation and control strategies.


Subject(s)
Aedes , Dengue Virus , Dengue , Mosquito Vectors , Phenotype , Aedes/virology , Animals , Dengue/transmission , Dengue/virology , Dengue/epidemiology , Mosquito Vectors/virology , Dengue Virus/physiology , Humans , Disease Outbreaks
13.
Euro Surveill ; 29(36)2024 Sep.
Article in English | MEDLINE | ID: mdl-39239729

ABSTRACT

While locally-acquired dengue virus (DENV) human infections occur in mainland France since 2010, data to identify the mosquito species involved and to trace the virus are frequently lacking. Supported by a local network gathering public health agencies and research laboratories, we analysed, in late summer 2023, mosquitoes from privately-owned traps within a French urban neighbourhood affected by a dengue cluster. The cluster, in Auvergne-Rhône-Alpes, comprised three cases, including two autochthonous ones. Upon return from a recent visit to the French Caribbean Islands, the third case had consulted healthcare because of dengue-compatible symptoms, but dengue had not been recognised. For the two autochthonous cases, DENV-specific antibodies in serum or a positive quantitative PCR for DENV confirmed DENV infection. The third case had anti-flavivirus IgMs. No DENV genetic sequences were obtained from affected individuals but Aedes albopictus mosquitoes trapped less than 200 m from the autochthonous cases' residence contained DENV. Genetic data from the mosquito-derived DENV linked the cluster to the 2023-2024 dengue outbreak in the French Caribbean Islands. This study highlights the importance of raising mosquito-borne disease awareness among healthcare professionals. It demonstrates Ae. albopictus as a DENV vector in mainland France and the value of private mosquito traps for entomo-virological surveillance.


Subject(s)
Aedes , Dengue Virus , Dengue , Animals , Aedes/virology , Humans , Dengue/transmission , Dengue/epidemiology , Dengue/diagnosis , Dengue/virology , France/epidemiology , Dengue Virus/isolation & purification , Dengue Virus/genetics , Mosquito Vectors/virology , Disease Outbreaks , Female , Seasons
14.
Front Immunol ; 15: 1434003, 2024.
Article in English | MEDLINE | ID: mdl-39176079

ABSTRACT

The Dengue virus (DENV), primarily spread by Aedes aegypti and also by Aedes albopictus in some regions, poses significant global health risks. Alternative techniques are urgently needed because the current control mechanisms are insufficient to reduce the transmission of DENV. Introducing Wolbachia pipientis into Ae. aegypti inhibits DENV transmission, however, the underlying mechanisms are still poorly understood. Innate immune effector upregulation, the regulation of autophagy, and intracellular competition between Wolbachia and DENV for lipids are among the theories for the mechanism of inhibition. Furthermore, mainly three immune pathways Toll, IMD, and JAK/STAT are involved in the host for the suppression of the virus. These pathways are activated by Wolbachia and DENV in the host and are responsible for the upregulation and downregulation of many genes in mosquitoes, which ultimately reduces the titer of the DENV in the host. The functioning of these immune pathways depends upon the Wolbachia, host, and virus interaction. Here, we summarize the current understanding of DENV recognition by the Ae. aegypti's immune system, aiming to create a comprehensive picture of our knowledge. Additionally, we investigated how Wolbachia regulates the activation of multiple genes associated with immune priming for the reduction of DENV.


Subject(s)
Aedes , Dengue Virus , Dengue , Immunity, Innate , Mosquito Vectors , Wolbachia , Aedes/immunology , Aedes/virology , Aedes/microbiology , Wolbachia/physiology , Wolbachia/immunology , Animals , Dengue Virus/immunology , Dengue Virus/physiology , Dengue/immunology , Dengue/transmission , Dengue/virology , Mosquito Vectors/immunology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Host-Pathogen Interactions/immunology , Humans , Signal Transduction/immunology
15.
Parasit Vectors ; 17(1): 329, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095920

ABSTRACT

BACKGROUND: Identifying mosquito vectors is crucial for controlling diseases. Automated identification studies using the convolutional neural network (CNN) have been conducted for some urban mosquito vectors but not yet for sylvatic mosquito vectors that transmit the yellow fever. We evaluated the ability of the AlexNet CNN to identify four mosquito species: Aedes serratus, Aedes scapularis, Haemagogus leucocelaenus and Sabethes albiprivus and whether there is variation in AlexNet's ability to classify mosquitoes based on pictures of four different body regions. METHODS: The specimens were photographed using a cell phone connected to a stereoscope. Photographs were taken of the full-body, pronotum and lateral view of the thorax, which were pre-processed to train the AlexNet algorithm. The evaluation was based on the confusion matrix, the accuracy (ten pseudo-replicates) and the confidence interval for each experiment. RESULTS: Our study found that the AlexNet can accurately identify mosquito pictures of the genus Aedes, Sabethes and Haemagogus with over 90% accuracy. Furthermore, the algorithm performance did not change according to the body regions submitted. It is worth noting that the state of preservation of the mosquitoes, which were often damaged, may have affected the network's ability to differentiate between these species and thus accuracy rates could have been even higher. CONCLUSIONS: Our results support the idea of applying CNNs for artificial intelligence (AI)-driven identification of mosquito vectors of tropical diseases. This approach can potentially be used in the surveillance of yellow fever vectors by health services and the population as well.


Subject(s)
Aedes , Mosquito Vectors , Neural Networks, Computer , Yellow Fever , Animals , Mosquito Vectors/classification , Yellow Fever/transmission , Aedes/classification , Aedes/physiology , Algorithms , Image Processing, Computer-Assisted/methods , Culicidae/classification , Artificial Intelligence
16.
Pak J Biol Sci ; 27(7): 337-347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39206467

ABSTRACT

<b>Background and Objective:</b> <i>Aedes</i> mosquito is a competent vector of arboviruses, mainly dengue, chikungunya, Zika and yellow fever. The high incidence of arboviral infections among travelers indicated the vulnerability of tourist attractions and public places visitors to arboviral infections. This study aimed to determine the presence and population density of <i>Aedes</i> mosquitoes at the places, as well as the susceptibility to temephos larvicide. <b>Materials and Methods:</b> A total of 17 tourist attractions and public places in four districts/cities of Central Java Province were selected as study sites and 25-40 ovitraps were installed in each location for three days. The coordinates, altitude, vegetation density, shade, wind speed, air temperature and humidity were recorded. Ovistrips and water of each ovitrap were observed in the laboratory to determine the ovitrap index (OI) and egg density index (EDI), mosquito species and their susceptibility to temephos. <b>Results:</b> A total of 12,231 eggs were obtained with a range, OI and EDI of 0-1,024, 42% and 31.93 eggs/trap, respectively. Vegetation density, shade and wind speed were significantly associated with the presence of <i>Aedes </i>eggs in the ovitraps (p<0.05), while altitude, temperature and air humidity were correlated with the average of <i>Aedes</i> eggs per ovitrap. <b>Conclusion:</b> Although <i>Aedes</i> larvae in all study sites were susceptible to temephos 0.02 mg/L the results indicated the vulnerability of visitors to <i>Aedes</i>-borne diseases. Further investigation of arbovirus infections in <i>Aedes</i> mosquitoes at tourist attractions and public places is necessary conducted to evaluate the potential and risk of pathogen transmission to visitors.


Subject(s)
Aedes , Mosquito Vectors , Temefos , Animals , Mosquito Vectors/virology , Aedes/virology , Aedes/drug effects , Humans , Insecticides , Population Density , Arbovirus Infections/transmission , Arboviruses , Indonesia/epidemiology
17.
Viruses ; 16(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39205176

ABSTRACT

The common house mosquito (Culex pipiens) is a native vector for West Nile virus (WNV). Invasive species like the tiger mosquito (Aedes albopictus) and Asian bush mosquito (Aedes japonicus) are rapidly spreading through Europe, posing a major threat as vectors for dengue, chikungunya (CHIKV), and Japanese encephalitis virus (JEV). These mosquitoes share a similar ecological niche as larvae, but the carry-over effects of aquatic larval interactions to the terrestrial adult stage remain largely unknown and their medical relevance requires further investigation. This study examines the context dependency of larval interactions among Aedes albopictus, Aedes japonicus, and Culex pipiens. The survival, development time, growth, and energetic storage were measured in different European populations within density-response (intraspecific) experiments and replacement (interspecific) experiments at 20 °C and 26 °C. Overall, Ae. japonicus was the weakest competitor, while competition between Ae. albopictus and Cx. pipiens varied with temperature. Adults emerging from this larval competition were infected as follows: Culex pipiens with WNV, Ae. albopictus with CHIKV, and Ae. japonicus with JEV. While no JEV infection was observed, mosquitoes experiencing interspecific interactions during their larval stages exhibited higher infection rates and viral RNA titers for CHIKV and WNV. This increased susceptibility to viral infection after larval competition suggests a higher risk of arbovirus transmission in co-occurring populations.


Subject(s)
Aedes , Culex , Larva , Mosquito Vectors , Animals , Culex/virology , Culex/growth & development , Aedes/virology , Aedes/growth & development , Aedes/physiology , Larva/virology , Mosquito Vectors/virology , Mosquito Vectors/growth & development , Arbovirus Infections/transmission , Arbovirus Infections/virology , Arboviruses/physiology , West Nile virus/physiology , Female , Chikungunya virus/physiology , Encephalitis Virus, Japanese/physiology
18.
Viruses ; 16(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39205228

ABSTRACT

The most prevalent arthropod-borne viruses, including the dengue viruses, are primarily transmitted by infected mosquitoes. However, the dynamics of dengue virus (DENV) infection and dissemination in human skin following Aedes aegypti probing remain poorly understood. We exposed human skin explants to adult female Ae. aegypti mosquitoes following their infection with DENV-2 by intrathoracic injection. Skin explants inoculated with a similar quantity of DENV-2 by a bifurcated needle were used as controls. Quantitative in situ imaging revealed that DENV replication was greatest in keratinocytes in the base of the epidermis, accounting for 50-60% of all infected cells regardless of the route of inoculation. However, DENV inoculation by Ae. aegypti probing resulted in an earlier and increased viral replication in the dermis, infecting twice as many cells at 24 h when compared to needle inoculation. Within the dermis, enhanced replication of DENV by Ae. aegypti infected mosquitoes was mediated by increased local recruitment of skin-resident macrophages, dermal dendritic cells, and epidermal Langerhans cells relative to needle inoculation. An enhanced but less pronounced influx of resident myeloid cells to the site of mosquito probing was also observed in the absence of infection. Ae. aegypti probing also increased recruitment and infection of dermal mast cells. Our findings reveal for the first time that keratinocytes are the primary targets of DENV infection following Ae. aegypti inoculation, even though most of the virus is inoculated into the dermis during probing. The data also show that mosquito probing promotes the local recruitment and infection of skin-resident myeloid cells in the absence of an intact vasculature, indicating that influx of blood-derived neutrophils is not an essential requirement for DENV spread within and out of skin.


Subject(s)
Aedes , Dengue Virus , Dengue , Mosquito Vectors , Myeloid Cells , Skin , Virus Replication , Aedes/virology , Dengue Virus/physiology , Animals , Humans , Skin/virology , Myeloid Cells/virology , Dengue/virology , Dengue/transmission , Mosquito Vectors/virology , Female , Keratinocytes/virology , Macrophages/virology
19.
Infect Dis Poverty ; 13(1): 61, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39198869

ABSTRACT

BACKGROUND: Aedes aegypti, the primary vector of dengue, chikungunya, and Zika viruses, poses a significant public health threat worldwide. Traditional control methods using insecticides are increasingly challenged by resistance and environmental concerns. The sterile insect technique (SIT) offers an eco-friendly alternative that has been successfully applied to other insect pests. This article aims to briefly review Ae. aegypti management in Cuba, highlighting the accomplishments, challenges, and future directions of the SIT. MAIN BODY: Here we provide a brief summary of the extensive history of Ae. aegypti control efforts in Cuba. After a successful eradication campaign in the 1980s, a resurgence of dengue cases has been observed in recent years, suggesting that traditional control methods may have limited effectiveness under current conditions. In response, Cuba initiated a phased approach to develop and evaluate the feasibility of SIT for Ae. aegypti control, starting in 2008. Initial research focused on Ae. aegypti mating behavior and sterilization methods, followed by successful laboratory and semi-field trials that demonstrated population suppression. The first open-field trial in 2020 confirmed the efficacy of the SIT in reducing Ae. aegypti populations under real-world conditions. Currently, the research is in a phase involving a cluster-randomized superiority-controlled trial. This planned trial will compare the standard vector control program with the same program augmented by the SIT, aiming to assess the impact of the SIT on dengue incidence as the primary outcome. Implementing robust epidemiological trials to evaluate the effectiveness of the SIT is complex due to potential spillover effects from mosquito and human movement across study areas. Additionally, conducting the SIT requires significant development and operational investments. Despite these challenges, the ongoing Cuban trial holds promise for establishing the SIT as an effective and sustainable tool for Ae. aegypti control and for reducing the burden of mosquito-borne diseases. CONCLUSIONS: The phased evaluation conducted in Cuba confirms the efficacy of the SIT against Ae. aegypti, highlighting its potential for sustainable mosquito-borne disease management. The effective implementation of multi-site trials will be crucial in providing evidence of the potential of the sterile insect technique as part of a strategy to reduce the incidence of arboviral diseases.


Subject(s)
Aedes , Dengue , Mosquito Control , Mosquito Vectors , Animals , Aedes/physiology , Cuba , Mosquito Control/methods , Mosquito Vectors/physiology , Dengue/prevention & control , Dengue/transmission , Pest Control, Biological/methods , Humans
20.
BMC Public Health ; 24(1): 2096, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095794

ABSTRACT

BACKGROUND: To assess whether the 'economic boom' in the tropical seaport city of Barranquilla improved tapped water supplies to socio-economically poor neighbourhoods resulting in: (1) their reduced use for domestic water-storage in large (> 1,000-litre) custom-made cement tanks which are their principal Aedes aegypti breeding sites and (2) their pupae/person index (PPI) values to below their established 0.5-1.5 PPI arbovirus transmission-threshold value, compared to matched neighbourhoods in the: (a) pre-economic boom (2004) period in Barranquilla and (b) economically-neglected seaport city of Buenaventura. METHODS: The simple, accurate and robust water surface sweep-net/calibration factor or total count methods were used to determine the total Ae. aegypti pupae numbers in greater or less than 20-litre water-holding container types located 'inside' or 'outside' these neighbourhood premises. The women residents also participated in questionnaire-based responses about their domestic water supplies, water-storage and maintenance and mosquito life stages and disease transmission knowledge, to subsequently plan appropriate resident education programmes. Microsoft Excel 8.0 with OpenEpi was used to determine the samples sizes and the statistical values. RESULTS: Tapped water supplies to the three poor Barranquilla neighbourhoods were dramatically increased from 2004 to 2023 resulting in their residents significantly reducing their: (a) large cement water-storage tanks from 1 per 6.9 (2004) to 1 per 31.2 (2020) premises (z = 10.5: p = 0) and (b) PPI values to 0.16, 0.19 and 0.53 (mean: 0.29: 95% CI ± 0.4) in each study neighbourhood. In contrast, tapped water supplies remained inadequate in the Buenaventura neighborhoods, thereby resulting in their continued use of many large (> 1,000-litre) water-storage containers (Barranquilla: 1 per 31.2 and Buenaventura: 1 per 1.5 premises: z = - 9.26: p = 0), with unacceptably high 0.81, 0.88 and 0.99 PPI values in each study neighbourhood (mean 0.89: 95% CI ± 0.12). CONCLUSIONS: Improved tapped water supplies resulted in reduced numbers of large custom-made stoneware water-containers, as are employed by poor residents throughout the world, as well as their Ae. aegypti PPI transmission threshold values which, together with appropriate residents' education programmes, are also urgently to reduce to prevent/reduce Ae. aegypti transmitted human diseases globally.


Subject(s)
Aedes , Water Supply , Animals , Humans , Female , Mosquito Vectors , Arbovirus Infections/transmission , Pupa , Dengue/transmission , Mosquito Control/methods , Colombia , Adult , Residence Characteristics/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL