Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.778
Filtrar
1.
Parasit Vectors ; 17(1): 389, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272154

RESUMEN

BACKGROUND: Aedes albopictus, commonly known as the Asian tiger mosquito, has become one of the most invasive mosquito species. Over the last 5 decades, it has been introduced and established in various tropical and temperate regions worldwide. First reported in Europe in 1979 in Albania and later in Italy in 1990, the species is now established in 13 European Union (EU)/European Economic Area (EEA) countries and 337 regions (2023). In Portugal, Ae. albopictus was first detected in the Algarve and Penafiel regions in 2017, followed by Alentejo in 2022 and Lisbon in 2023. This mosquito species poses a significant public health risk as a vector for numerous pathogenic viruses, including dengue, Zika, and chikungunya. METHODS: Aedes albopictus collected in Lisbon in 2023 were analyzed using cytochrome c oxidase I (COX) gene sequencing to understand their genetic relationships. RESULTS: Our data indicate that the Ae. albopictus mosquito populations detected in three locations in Lisbon in 2023 correspond to recent but distinct introduction events. CONCLUSIONS: Although there has been no local transmission of Aedes-transmitted viruses in mainland Portugal to date, the spread of the mosquito and increased international travel increase the risk of Aedes-borne disease outbreaks. The ongoing spread of Ae. albopictus in the country and the confirmed multiple introductions in new locations raise awareness of the need to monitor mosquito vectors to control and prevent autochthonous Aedes-borne disease outbreaks.


Asunto(s)
Aedes , Especies Introducidas , Mosquitos Vectores , Aedes/genética , Aedes/virología , Aedes/clasificación , Animales , Portugal , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Filogenia , Complejo IV de Transporte de Electrones/genética , Femenino
2.
Parasit Vectors ; 17(1): 391, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39272177

RESUMEN

BACKGROUND: Microbial larvicides containing both LysiniBacillus sphaericus and Bacillus thuringiensis svar. israelensis (Bti) insecticidal crystals can display advantages for mosquito control. This includes a broader action against larvae that are refractory to the Binary (Bin) toxin from L. sphaericus, as Bin-resistant Culex quinquefasciatus and Aedes aegypti naturally refractory larvae, which often co-habit urban areas of endemic countries for arboviruses. Our principal goal was to assess the toxicity of a combined L. sphaericus/Bti larvicide (Vectomax FG™) to Cx. quinquefasciatus (susceptible CqS and Bin-resistant CqR) and Ae. aegypti (Rocke) and to determine its persistence in the breeding sites with those larvae. METHODS: The toxicity of a combined L. sphaericus/Bti product (VectoMax FG™) to larvae was performed using bioassays, and persistence was evaluated in simulate field trials carried out under the shade, testing two label concentrations during 12 weeks. A laboratory strain SREC, established with CqS and CqR larvae, was kept during four generations to evaluate the ability of the L. sphaericus/Bti to eliminate resistant larvae. RESULTS: The L. sphaericus/Bti showed toxicity (mg/L) to larvae from all strains with a decreasing pattern for CqS (LC50 = 0.006, LC90 = 0.030), CqR (LC50 = 0.009, LC90 = 0.069), and Rocke (LC50 = 0.042, LC90 = 0.086). In a simulated field trial, the larvicide showed a persistence of 6 weeks and 8 weeks, controlling larvae from all strains in containers with 100 L of water, using 2 g or 4 g per container (100 L), respectively. The treatment of SREC larvae with L. sphaericus/Bti showed its capacity to eliminate the Bin-resistant individuals using suitable concentrations to target those larvae. CONCLUSIONS: Our results showed the high efficacy and persistence of the L. sphaericus/Bti larvicide to control Cx. quinquefasciatus and Ae. aegypti that might cohabit breeding sites. These findings demonstrated that such larvicides can be an effective tool for controlling those species in urban areas with a low potential for selecting resistance.


Asunto(s)
Aedes , Bacillaceae , Bacillus thuringiensis , Culex , Insecticidas , Larva , Control de Mosquitos , Control Biológico de Vectores , Animales , Culex/efectos de los fármacos , Aedes/efectos de los fármacos , Larva/efectos de los fármacos , Control de Mosquitos/métodos , Insecticidas/farmacología , Bacillaceae/química , Control Biológico de Vectores/métodos , Resistencia a los Insecticidas , Mosquitos Vectores/efectos de los fármacos
3.
Ecol Evol Physiol ; 97(4): 250-261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39270329

RESUMEN

AbstractGlobal warming trends, human-assisted transport, and urbanization have allowed poleward expansion of many tropical vector species, but the specific mechanisms responsible for thermal mediation of range changes and ecological success of invaders remain poorly understood. Aedes aegypti (Diptera: Culicidae) is a tropical mosquito currently expanding into many higher-latitude regions, including the urban desert region of Maricopa County, Arizona. Here, adult populations virtually disappear in winter and spring and then increase exponentially through summer and fall, indicating that winter conditions remain a barrier to the development of some life stages of A. aegypti. To determine whether cold limits the winter development of A. aegypti larvae in Maricopa County, we surveyed for larval abundance and tested their capacity to develop in ambient and warmed conditions. Aedes aegypti larvae were not observed in artificial aquatic habitats in winter and spring but were abundant in summer and fall, suggesting winter suppression of adults, larvae, or both. Water temperatures in winter months fluctuated strongly; larvae were usually cold paralyzed at night but active during the day. Despite daytime temperatures that allowed activity and achieving similar degree-days as warmed mesocosms, larvae reared under ambient winter conditions were unable to develop to adulthood, perhaps due to repetitive cold damage. However, warming average temperature by 1.7°C allowed many larvae to successfully develop to adults. Because daytime highs in winter will often allow adult flight, it is likely that relatively minor additional winter warming may allow A. aegypti populations to develop and reproduce year-round in Maricopa County.


Asunto(s)
Aedes , Cambio Climático , Frío , Larva , Estaciones del Año , Animales , Aedes/fisiología , Aedes/crecimiento & desarrollo , Larva/fisiología , Larva/crecimiento & desarrollo , Arizona , Clima Desértico , Ciudades
4.
BMC Infect Dis ; 24(1): 944, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251932

RESUMEN

BACKGROUND: For decades, dengue has posed a significant threat as a viral infectious disease, affecting numerous human lives globally, particularly in tropical regions, yet no cure has been discovered. The genetic trait of vector competence in Aedes mosquitoes, which facilitates dengue transmission, is difficult to measure and highly sensitive to environmental changes. METHODS: In this study we attempt, for the first time in a non-laboratory setting, to quantify the vector competence of Aedes mosquitoes assuming its homogeneity across both species; aegypti and albopictus and across the four Dengue serotypes. Estimating vector competence in relation to varying rainfall patterns was focused in this study to showcase the changes in this vector trait with respect to environmental variables. We quantify it using an existing mathematical model originally developed for malaria in a Bayesian inferencing setup. We conducted this study in the Colombo district of Sri Lanka where the highest number of human populations are threatened with dengue. Colombo district experiences continuous favorable temperature and humidity levels throughout the year creating ideal conditions for Aedes mosquitoes to thrive and transmit the Dengue disease. Therefore we only used the highly variable and seasonal rainfall as the primary environmental variable as it significantly influences the number of breeding sites and thereby impacting the population dynamics of Aedes. RESULTS: Our research successfully deduced vector competence values for the four identified seasons based on Monsoon rainfalls experienced in Colombo within a year. We used dengue data from 2009 - 2022 to infer the estimates. These estimated values have been corroborated through experimental studies documented in the literature, thereby validating the malaria model to estimate vector competence for dengue disease. CONCLUSION: Our research findings conclude that environmental conditions can amplify vector competence within specific seasons, categorized by their environmental attributes. Additionally, the deduced vector competence offers compelling evidence that it impacts disease transmission, irrespective of geographical location, climate, or environmental factors.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Mosquitos Vectores , Animales , Aedes/virología , Aedes/genética , Sri Lanka/epidemiología , Dengue/transmisión , Dengue/virología , Dengue/epidemiología , Mosquitos Vectores/virología , Mosquitos Vectores/genética , Humanos , Virus del Dengue/genética , Lluvia
5.
Acta Trop ; 259: 107377, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245155

RESUMEN

The genus Haemagogus (Diptera: Culicidae) includes species that are important vectors of pathogens such as the yellow fever virus. The accurate identification of these species is essential for the control of zoonoses. Females of Hg. capricornii and Hg. janthinomys are morphologically indistinguishable, which makes the use of alternative identification techniques desirable. This study aimed to obtain sequences of the mitochondrial cytochrome c oxidase I (COI) gene, in the region widely used for DNA barcoding, of Haemagogus specimens from the state of São Paulo, Brazil, to evaluate the effectiveness of these sequences in the molecular identification of the species. A total of 37 female and 2 male mosquitoes were collected in various locations in the state of São Paulo, using methods such as hand-nets, Shannon traps, CDC light traps with CO2 bait and Nasci aspirators. The sequences of a 710 bp fragment of the COI gene were amplified by PCR and sequenced. A phylogenetic tree reconstruction was conducted using the Bayesian approach implemented in MrBayes v3.2.2, providing support values for taxa where genetic clusters may indicate the presence of new or cryptic species. We obtained 39 COI sequences representing three species: Haemagogus capricornii, Haemagogus leucocelaenus, and Haemagogus janthinomys. Bayesian analysis of the sequences produced clades that corroborate the morphological identification of the species. The separation of Hg. capricornii and Hg. janthinomys received 100 % statistical support and the Hg. capricornii was very well supported (91 %). The two sequences from male specimens, morphologically identified as Hg. capricornii, were grouped in the same clade, a sister clade of Hg. janthinomys. It is important to highlight that the Hg. janthinomys were positioned in several subclades, showing a polymorphism of this species within the state, a situation not observed for Hg. capricornii. For the first time, sequences of the mtCOI gene from Hg. capricornii were obtained and related to morphologically identified specimens. COI sequences proved effective in the molecular identification of Haemagogus species. This study contributes to the expansion of the GenBank database, providing the first sequences of Hg. capricornii and new sequences for Hg. janthinomys and Hg. leucocelaenus.

6.
Sci Rep ; 14(1): 21161, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256502

RESUMEN

Influxes of sargassos are responsible for economic and environmental disasters in areas where they bloom, especially in regions whose main income relies on tourism and with limited capacity for sanitation and public health response. A promising way of valorization would be to convert this incredible biomass into tools to fight the deadly vector mosquito Aedes aegypti. In the present study, we generated hydrolates and aqueous extracts from three main Sargassum morphotypes identified in Guadeloupe (French West Indies): Sargassum natans VIII, Sargassum natans I and Sargassum fluitans. We conducted a chemical characterization and a holistic evaluation of their potential to induce toxic and behavioral effects in Ae. aegypti. Despite the low insecticidal potential observed for all the extracts, we found that S. natans VIII and S. fluitans hydrolates deterred oviposition, induced contact irritancy and stimulated blood feeding behavior in host seeking Ae. aegypti females, while aqueous extracts from S. natans I and S. fluitans deterred both blood feeding behavior and oviposition. Chemical characterization evidenced the presence of phenylpropanoid, polyphenols, amino acids and esters. Thus, Sargassum spp. aqueous extracts and hydrolates could be used to manipulate Ae. aegypti behavior and be valorized as control tools against this mosquito.


Asunto(s)
Aedes , Sargassum , Animales , Aedes/efectos de los fármacos , Aedes/fisiología , Sargassum/química , Femenino , Control de Mosquitos/métodos , Mosquitos Vectores , Oviposición/efectos de los fármacos , Control Biológico de Vectores/métodos , Insecticidas/farmacología , Insecticidas/química , Especies Introducidas
7.
PLoS Negl Trop Dis ; 18(9): e0012397, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39264869

RESUMEN

BACKGROUND: Seasonal fluctuations in weather are recognized as factors that affect both Aedes (Ae.) aegypti mosquitoes and the diseases they carry, such as dengue fever. The El Niño-Southern Oscillation (ENSO) is widely regarded as one of the most impactful atmospheric phenomena on Earth, characterized by the interplay of shifting ocean temperatures, trade wind intensity, and atmospheric pressure, resulting in extensive alterations in climate conditions. In this study, we investigate the influence of ENSO and local weather conditions on the spatio-temporal variability of Ae. aegypti infestation index. METHODS: We collected seasonal entomological survey data of immature forms of Ae. aegypti mosquitoes (Breteau index), as well as data on temperature, rainfall and the Oceanic Niño Index (ONI) for the period 2008-2018 over the 645 municipalities of the subtropical State of São Paulo (Brazil). We grounded our analytical approach on a Bayesian framework and we used a hierarchical spatio-temporal model to study the relationship between ENSO tracked by ONI, seasonal weather fluctuations and the larval index, while adjusting for population density and wealth inequalities. RESULTS: Our results showed a relevant positive effect for El Niño on the Ae. aegypti larval index. In particular, we found that the number of positive containers would be expected to increase by 1.30-unit (95% Credible Intervals (CI): 1.23 to 1.37) with El Niño events (i.e., ≥ 1°C, moderate to strong) respect to neutral (and weak) events. We also found that seasonal rainfall exceeding 153.12 mm appears to have a notable impact on vector index, leading potentially to the accumulation of ample water in outdoor discarded receptacles, supporting the aquatic phase of mosquito development. Additionally, seasonal temperature above 23.30°C was found positively associated to the larval index. Although the State of São Paulo as a whole has characteristics favourable to proliferation of the vector, there were specific areas with a greater tendency for mosquito infestation, since the most vulnerable areas are predominantly situated in the central and northern regions of the state, with hot spots of abundance in the south, especially during El Niño events. Our findings also indicate that social disparities present in the municipalities contributes to Ae. aegypti proliferation. CONCLUSIONS: Considering the anticipated rise in both the frequency and intensity of El Niño events in the forthcoming decades as a consequence of climate change, the urgency to enhance our ability to track and diminish arbovirus outbreaks is crucial.


Asunto(s)
Aedes , Teorema de Bayes , Dengue , El Niño Oscilación del Sur , Mosquitos Vectores , Estaciones del Año , Tiempo (Meteorología) , Animales , Aedes/fisiología , Aedes/crecimiento & desarrollo , Brasil/epidemiología , Dengue/epidemiología , Dengue/transmisión , Mosquitos Vectores/fisiología , Larva/fisiología , Larva/crecimiento & desarrollo , Análisis Espacio-Temporal , Temperatura
8.
Virulence ; 15(1): 2401985, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39263937

RESUMEN

Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF), and its primary vectors are the mosquitoes Aedes aegypti and Aedes albopictus. CHIKV was initially endemic to Africa but has spread globally in recent years and affected millions of people. According to a risk assessment by the World Health Organization, CHIKV has the potential seriously impact public health. A growing body of research suggests that mutations in the CHIKV gene that enhance viral fitness in the host are contributing to the expansion of the global CHIKF epidemic. In this article, we review the host-adapted gene mutations in CHIKV under natural evolution and laboratory transmission conditions, which can help improve our understanding of the adaptive evolution of CHIKV and provide a basis for monitoring and early warning of future CHIKV outbreaks.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Genoma Viral , Mutación , Virus Chikungunya/genética , Fiebre Chikungunya/virología , Fiebre Chikungunya/transmisión , Animales , Humanos , Aedes/virología , Aedes/genética , Mosquitos Vectores/virología , Mosquitos Vectores/genética , Adaptación al Huésped/genética
9.
Parasit Vectors ; 17(1): 386, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267122

RESUMEN

BACKGROUND: Certain mosquitoes are known as dominant vectors worldwide, and transmit infectious diseases. The expansion of mosquito habitats due to climate change and increased human activities poses a significant health threat by facilitating the spread of various non-native infectious diseases. This study focused on the detection of the Southeast Asian mosquito species, Aedes (Mucidus) laniger (Wiedemann, 1820) on Jeju Island, the southernmost region of the Republic of Korea (ROK), highlighting the potential risks associated with the spread of vector-borne diseases, particularly emphasizing the elevated likelihood of invasion by Southeast Asian mosquitoes. METHODS: Field surveys were conducted in August 2023 on Jeju Island. Adult mosquitoes were collected using BG-sentinel traps and identified to the species level using taxonomic keys. Morphological and molecular analyses were employed to confirm species designations. Molecular data, including mitochondrial and nuclear genes, were used for phylogenetic analysis, which was performed to compare and identify among recorded subgenera in ROK. Species distribution modeling for Ae. laniger was performed to predict potential habitats using R package 'BIOMOD2'. RESULTS: The two specimens of Ae. laniger were collected for the first time on Jeju Island. Morphological and molecular analyses confirmed the identity of this species within the subgenus Mucidus and validated the first record of this species in the ROK. We employed a simple multigene phylogenetic analysis to confirm a new mosquito record at the genus and subgenus levels, finally validating the consistency between morphological identification and molecular phylogenetic outcomes. Furthermore, we have updated the taxonomic keys for the genus Aedes in the ROK, and revised mosquito lists for Jeju Island, incorporating the inclusion of Ae. laniger. On the basis of species distribution modeling, the area of suitable habitat for Ae. laniger is expected to expand due to climate change, but this change did not appear to be meaningful in East Asia. CONCLUSIONS: This case offers the first report of the Southeast Asian mosquito, Ae. laniger, in the ROK. The detection of this species on Jeju Island suggests the potential establishment of a breeding population their habitat and raises concerns about further expansion into the Korean Peninsula. Considering the annual occurrence of mosquito-borne disease cases in the Southeast Asia, it is essential to conduct monitoring not only in Jeju Island, where Ae. laniger has been identified, but also across the entire Korean Peninsula.


Asunto(s)
Aedes , Islas , Mosquitos Vectores , Filogenia , Animales , Aedes/genética , Aedes/clasificación , Aedes/fisiología , República de Corea , Mosquitos Vectores/genética , Mosquitos Vectores/clasificación , Mosquitos Vectores/fisiología , Ecosistema , Femenino , Distribución Animal , Pueblos del Sudeste Asiático
11.
Artículo en Inglés | MEDLINE | ID: mdl-39237114

RESUMEN

The Arizona State University (ASU) Tempe campus is inhabited by some 55,000 enrolled students as well as several mosquito species that can transmit West Nile virus, dengue, Zika, chikungunya, and yellow fever. The time of host-seeking of these vectors has not been quantified on the ASU Tempe campus, but this information is important to inform ground and/or truck-mount fogging operations targeting mosquitoes to prevent or control disease outbreaks. We quantified the time of host-seeking of the predominant mosquito vector species at the ASU Tempe campus during the post-monsoon season in 2021, using collection bottle rotators with encephalitis vector survey traps that were baited with CO2, at 3 h intervals during a full day. Culex quinquefasciatus, Aedes aegypti, and Culex tarsalis were the most abundant species captured. Pre-midnight host-seeking (18:00-00:00) accounted for 52% of all captures, whereas post-midnight host-seeking (00:00-06:00) accounted for 35% of all captures. Peak activity times were between 21:00 and 00:00 for Cx. quinquefasciatus and Cx. tarsalis, and between 15:00 and 18:00 for Ae. aegypti. Data can be used to inform local mosquito surveillance and control programs.

12.
Braz J Microbiol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254800

RESUMEN

The yellow fever virus (YFV) is a single stranded RNA virus belonging to the genus Orthoflavivirus that is capable of zoonotic transmissions that infect nonhuman and human primates. It is endemic in Brazil with recurrent epidemics of the disease, and it is transmitted through mosquitoes. The detection and immunization against YFV and other flaviviruses are fundamental for the management of the impacts of the disease in human environments. In an ongoing effort to develop new approaches for diagnostics and immunizations, we expressed VLPs displaying the yellow fever virus envelope protein (YFE) using recombinant baculovirus in insect cells. By co-expressing HIV-1 Pr55Gag protein (GAG) together with YFE we were able to generate chimeric VLPs containing a GAG core together with an envelope containing the YFE protein. The YFE and the chimeric GAG-YFE VLPs have potential as vaccine candidates and as reagents for serological assays in the detection of these viruses in human sera.

13.
Nat Commun ; 15(1): 7823, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39242617

RESUMEN

The incidence of vector-borne disease is on the rise globally, with burdens increasing in endemic countries and outbreaks occurring in new locations. Effective mitigation and intervention strategies require models that accurately predict both spatial and temporal changes in disease dynamics, but this remains challenging due to the complex and interactive relationships between environmental variation and the vector traits that govern the transmission of vector-borne diseases. Predictions of disease risk in the literature typically assume that vector traits vary instantaneously and independently of population density, and therefore do not capture the delayed response of these same traits to past biotic and abiotic environments. We argue here that to produce accurate predictions of disease risk it is necessary to account for environmentally driven and delayed instances of phenotypic plasticity. To show this, we develop a stage and phenotypically structured model for the invasive mosquito vector, Aedes albopictus, and dengue, the second most prevalent human vector-borne disease worldwide. We find that environmental variation drives a dynamic phenotypic structure in the mosquito population, which accurately predicts global patterns of mosquito trait-abundance dynamics. In turn, this interacts with disease transmission to capture historic dengue outbreaks. By comparing the model to a suite of simpler models, we reveal that it is the delayed phenotypic structure that is critical for accurate prediction. Consequently, the incorporation of vector trait relationships into transmission models is critical to improvement of early warning systems that inform mitigation and control strategies.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Mosquitos Vectores , Fenotipo , Aedes/virología , Animales , Dengue/transmisión , Dengue/virología , Dengue/epidemiología , Mosquitos Vectores/virología , Virus del Dengue/fisiología , Humanos , Brotes de Enfermedades
14.
PLoS Negl Trop Dis ; 18(9): e0012482, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255310

RESUMEN

BACKGROUND: Climate change and urbanization will alter the global distribution of disease vectors, changing the disease burden in yet unpredictable ways. Aedes aegypti is a mosquito responsible for transmitting dengue, Zika, chikungunya, and yellow fever viruses that breeds in containers associated with urban environments. We sought to understand how ambient temperature and larval densities in the immature aquatic phases determine adult life history traits and dengue virus loads post-infection. We predicted that larval crowding and high temperatures would both lead to smaller mosquitoes that might struggle to invest in an immune response and, hence, would exhibit high viral loads. METHODS: We first examined larval densities from urban and rural areas via a meta-analysis. We then used these data to inform a laboratory-based 2x2 design examining the interacting effects of temperature (21 vs. 26°C) and density (0.2 vs. 0.4 larvae/mL) on adult life history and dengue virus loads. RESULTS: We found that urban areas had an ~8-fold increase in larval densities compared to more rural sites. In the lab, we found that crowding had more impact on mosquito traits than temperature. Crowding led to slower development, smaller mosquitoes, less survival, lower fecundity, and higher viral loads, as predicted. The higher temperature led to faster development, reduced fecundity, and lower viral loads. The virus-reducing effect of higher temperature rearing was, however, overwhelmed by the impact of larval crowding when both factors were present. CONCLUSIONS: These data reveal complex interactions between the environmental effects experienced by immature mosquitoes and adult traits. They especially highlight the importance of crowding with respect to adult viral loads. Together, these data suggest that urban environments might enhance dengue virus loads and, therefore, possibly transmission, a concerning result given the increasing rates of urbanization globally.

15.
Euro Surveill ; 29(36)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39239729

RESUMEN

While locally-acquired dengue virus (DENV) human infections occur in mainland France since 2010, data to identify the mosquito species involved and to trace the virus are frequently lacking. Supported by a local network gathering public health agencies and research laboratories, we analysed, in late summer 2023, mosquitoes from privately-owned traps within a French urban neighbourhood affected by a dengue cluster. The cluster, in Auvergne-Rhône-Alpes, comprised three cases, including two autochthonous ones. Upon return from a recent visit to the French Caribbean Islands, the third case had consulted healthcare because of dengue-compatible symptoms, but dengue had not been recognised. For the two autochthonous cases, DENV-specific antibodies in serum or a positive quantitative PCR for DENV confirmed DENV infection. The third case had anti-flavivirus IgMs. No DENV genetic sequences were obtained from affected individuals but Aedes albopictus mosquitoes trapped less than 200 m from the autochthonous cases' residence contained DENV. Genetic data from the mosquito-derived DENV linked the cluster to the 2023-2024 dengue outbreak in the French Caribbean Islands. This study highlights the importance of raising mosquito-borne disease awareness among healthcare professionals. It demonstrates Ae. albopictus as a DENV vector in mainland France and the value of private mosquito traps for entomo-virological surveillance.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Animales , Aedes/virología , Humanos , Dengue/transmisión , Dengue/epidemiología , Dengue/diagnóstico , Dengue/virología , Francia/epidemiología , Virus del Dengue/aislamiento & purificación , Virus del Dengue/genética , Mosquitos Vectores/virología , Brotes de Enfermedades , Femenino , Estaciones del Año
16.
Lancet Planet Health ; 8(9): e617-e628, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39243778

RESUMEN

BACKGROUND: Incompatible insect technique (IIT) coupled with sterile insect technique (SIT) via the release of sterile male Wolbachia-infected mosquitoes is a promising tool for Aedes-borne disease control. Yet, real-world evidence on the suppressive effectiveness of IIT-SIT on mosquito abundance remains mostly limited to small semi-rural village and suburban localities over short trial durations. However, a large proportion of Aedes-borne diseases occur in dense, urban, and high-rise locations, limiting the applicability of previous studies for these settings with high disease burden. The sustainability and use of this technology over multiple years is also unknown. METHODS: In this synthetic control study, we conducted a large-scale, field trial of IIT-SIT targeting Aedes aegypti among high-rise public housing estates in Singapore, an equatorial city state. Routinely collected data from a large, nationwide surveillance system of 57 990 unique mosquito traps, combined with a high-dimensional set of anthropogenic and environmental confounders were collected to ascertain mosquito abundance and its key drivers. Four townships were selected as the intervention groups (approximate population size of 607 872 residents as of 2022), wherein interventions that combined ITT with SIT over the course of the study period were conducted. Townships were subject to releases of wAlbB-SG male A aegypti mosquitoes twice a week. Data were assessed over the course of epidemiological weeks (EWs), which provide the finest temporal resolution of recorded Wolbachia release schedule and mosquito abundance data. A novel synthetic control framework was then developed to account for the non-randomised and staggered adoption setting of the intervention across trial sectors to identify the direct suppressive effectiveness of IIT-SIT on female A aegypti populations, the spillover effects in non-release areas, and the effect of the intervention on other mosquito populations such as Aedes albopictus. Furthermore, we recalculated effectiveness in terms of calendar time, time since intervention, and over multiple sites to examine heterogeneities in IIT-SIT effectiveness. FINDINGS: Between EW27 2018 and EW26 2022, Wolbachia releases were conducted across 117 sectors, of which 97 had sufficient trap data, which were collected between EW8 2019 and EW26 2022. We found that Wolbachia-based IIT-SIT reduced wild-type female A aegypti populations by a mean of 62·01% (95% CI 60·68 to 63·26) by 3 months, 78·40% (77·56 to 79·18) by 6 months, and 91·32% (90·95 to 91·66) by at least 18 months of releases. We also found a smaller but non-negligible spillover suppression effect that gradually increased over time (mean spillover intervention effectiveness 61·02% [95% CI 57·89 to 63·72] in adjacent, non-intervention sectors). Although no consistent change in A albopictus populations was seen across the four intervention townships after Wolbachia releases, the average intervention effectiveness on the A albopictus population across all release sectors was -25·80% (95% CI -30·93 to -21·05), which was driven by increases in two towns. INTERPRETATION: Our results demonstrate the potential of IIT-SIT for strengthening long-term, large-scale vector control in tropical cities, where dengue burden is the greatest. The effect of these interventions in different geographical settings should be assessed in future work. FUNDING: Singapore's Ministry of Finance, Ministry of Sustainability and the Environment, National Environment Agency, and National Robotics Program.


Asunto(s)
Aedes , Control de Mosquitos , Mosquitos Vectores , Wolbachia , Aedes/microbiología , Animales , Wolbachia/fisiología , Singapur , Control de Mosquitos/métodos , Masculino , Femenino , Mosquitos Vectores/microbiología , Control Biológico de Vectores/métodos
17.
Sci Rep ; 14(1): 20677, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237741

RESUMEN

Mosquito-borne diseases, such as malaria, dengue, and Zika, pose major public health challenges globally, affecting millions of people. The growing resistance of mosquito populations to synthetic insecticides underscores the critical need for effective and environmentally friendly larvicides. Although chemical pesticides can initially be effective, they often lead to negative environmental consequences and health hazards for non-target species, including humans. This study aimed to evaluate the larvicidal effects of Trachyspermum ammi essential oil and Delphinium speciosum extract on the larvae of three major mosquito species: Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Mosquito larvae of Ae. aegypti, An. stephensi, and Cx. quinquefasciatus were reared under controlled laboratory conditions. The larvicidal activity of T. ammi essential oil and D. speciosum extract was evaluated through standard bioassays, using various concentrations of essential oils (10, 20, 40, 80, and 160 ppm) and extracts (160, 320, 640, 1280, and 2560 ppm) to determine the lethal concentration (LC50) values after 24 h of exposure. Fresh plant materials were collected, with the essential oil extracted via hydro-distillation, and the extract prepared using methanol solvent extraction. The chemical composition of T. ammi essential oil was examined using gas chromatography-mass spectrometry (GC-MS). Additionally, the preliminary analysis of the chemical compounds in D. speciosum extract was carried out using thin layer chromatography (TLC) and nuclear magnetic resonance spectroscopy (NMR) techniques. The results indicated that the essential oil of T. ammi exhibited more effective larvicidal activity compared to the D. speciosum extract. Specifically, the essential oil demonstrated LC50 values of 18 ppm for Cx. quinquefasciatus and 19 ppm for Ae. aegypti. In contrast, the D. speciosum extract showed the strongest larvicidal effect against An. stephensi, with an LC50 of 517 ppm. Concentrations of 40 ppm of the essential oil and 1280 ppm of the extract resulted in 100% mortality across all three species. Both the essential oil of T. ammi and the D. speciosum extract exhibited concentration-dependent larvicidal activity, and these results were statistically significant (p < 0.001) compared to the no-treatment group. GC-MS analysis revealed thymol (88.95%), o-cymen-5-ol (4.11%), and γ-terpinene (2.10%) as the major constituents of the T. ammi essential oil. Additionally, TLC verified the presence of alkaloids in both chloroform and methanolic extracts. Proton NMR identified a diterpene structure for these alkaloids. These findings suggest that T. ammi essential oil is a promising candidate for natural mosquito control strategies. Given its efficacy, further research is warranted to explore its potential in integrated vector management programs.


Asunto(s)
Delphinium , Insecticidas , Larva , Mosquitos Vectores , Aceites Volátiles , Extractos Vegetales , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Larva/efectos de los fármacos , Mosquitos Vectores/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Insecticidas/farmacología , Insecticidas/química , Delphinium/química , Aedes/efectos de los fármacos , Dengue , Malaria/prevención & control , Anopheles/efectos de los fármacos , Filariasis , Culex/efectos de los fármacos , Control de Mosquitos/métodos
18.
Sci Rep ; 14(1): 20545, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232089

RESUMEN

The mosquito microbiome significantly influences vector competence, including in Aedes albopictus, a globally invasive vector. Describing the microbiome and Wolbachia strains of Ae. albopictus from different regions can guide area-specific control strategies. Mosquito samples from Spain and São Tomé were analyzed using 16S rRNA gene sequencing and metagenomic sequencing. Wolbachia infection patterns were observed by sex and population. Female mosquitoes were blood-fed, a factor considered in analyzing their microbiota. Results revealed a dominance of dual Wolbachia infections, strains A and B, in the microbiome of both populations of Ae. albopictus, especially among females. Both populations shared a core microbiome, although 5 and 9 other genera were only present in Spain and São Tomé populations, respectively. Genera like Pelomonas and Nevskia were identified for the first time in Aedes mosquitoes. This study is the first to describe the Ae. albopictus bacteriome in Spain and São Tomé, offering insights for the development of targeted mosquito control strategies. Understanding the specific microbiome composition can help in designing more effective interventions, such as microbiome manipulation and Wolbachia-based approaches, to reduce vector competence and transmission potential of these mosquitoes.


Asunto(s)
Aedes , Microbiota , ARN Ribosómico 16S , Wolbachia , Animales , Aedes/microbiología , España , Wolbachia/genética , Wolbachia/aislamiento & purificación , Wolbachia/fisiología , Femenino , ARN Ribosómico 16S/genética , Mosquitos Vectores/microbiología , Ecosistema , Masculino
19.
Parasit Vectors ; 17(1): 375, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232769

RESUMEN

BACKGROUND: C-type lectins (CTLs) are a large family of proteins with sugar-binding activity. CTLs contain an evolutionarily conserved C-type lectin domain (CTLD) that binds microbial carbohydrates in a calcium-dependent manner, thereby playing a key role in both microbial pathogenesis and innate immune responses. Aedes albopictus is an important vector for transmitting dengue virus (DENV) worldwide. Currently, the molecular characteristics and functions of CTLs in Ae. albopictus are largely unknown. METHODS: Transcripts encoding CTL proteins in the Ae. albopictus genome assembly were analyzed via sequence blast. Phylogenetic analysis and molecular characterization were performed to identify the functional domains of the CTLs. Quantitative analysis was performed to determine the gene expression features of CTLs during mosquito development and in different tissues of female adults after blood feeding. In addition, the functional role of CTLs in response to DENV infection was investigated in Ae. albopictus mosquito cells. RESULTS: We identified 39 transcripts encoding CTL proteins in the Ae. albopictus transcriptome. Aedes albopictus CTLs are classified into three groups based on the number of CTLDs and the domain architecture. These included 29 CTL-Ss (single-CTLDs), 1 immulectins (dual-CTLD) and 9 CTL-Xs (CTLDs with other domains). Phylogenetic analysis and structural modeling indicated that CTLs in Ae. albopictus are highly conserved with the homologous CTLs in Aedes aegypti. The expression profile assay revealed differential expression patterns of CTLs in both developmental stages and in adult female tissues. Knockdown and overexpression of three CTLs (CTL-S12, S17 and S19) confirmed that they can promote dengue virus infection in Ae. albopictus cells. CONCLUSIONS: The CTL genes in Ae. albopictus mosquito and other mosquito species are evolutionarily conserved and exhibit different developmental and tissue expression features. The functional assay indicated that three CTLs in Ae. albopictus mosquitoes are involved in promoting dengue virus infection. Our study revealed that CTLs play important roles in both the physiological processes and viral infection in mosquito vectors.


Asunto(s)
Aedes , Virus del Dengue , Lectinas Tipo C , Mosquitos Vectores , Filogenia , Aedes/genética , Aedes/virología , Animales , Virus del Dengue/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/química , Femenino , Mosquitos Vectores/virología , Mosquitos Vectores/genética , Dengue/transmisión , Dengue/virología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Transcriptoma , Inmunidad Innata , Perfilación de la Expresión Génica
20.
Parasit Vectors ; 17(1): 372, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223629

RESUMEN

Mosquito-borne diseases are a major global health threat. Traditional morphological or molecular methods for identifying mosquito species often require specialized expertise or expensive laboratory equipment. The use of convolutional neural networks (CNNs) to identify mosquito species based on images may offer a promising alternative, but their practical implementation often remains limited. This study explores the applicability of CNNs in classifying mosquito species. It compares the efficacy of body and wing depictions across three image collection methods: a smartphone, macro-lens attached to a smartphone and a professional stereomicroscope. The study included 796 specimens of four morphologically similar Aedes species, Aedes aegypti, Ae. albopictus, Ae. koreicus and Ae. japonicus japonicus. The findings of this study indicate that CNN models demonstrate superior performance in wing-based classification 87.6% (95% CI: 84.2-91.0) compared to body-based classification 78.9% (95% CI: 77.7-80.0). Nevertheless, there are notable limitations of CNNs as they perform reliably across multiple devices only when trained specifically on those devices, resulting in an average decline of mean accuracy by 14%, even with extensive image augmentation. Additionally, we also estimate the required training data volume for effective classification, noting a reduced requirement for wing-based classification compared to body-based methods. Our study underscores the viability of both body and wing classification methods for mosquito species identification while emphasizing the need to address practical constraints in developing accessible classification systems.


Asunto(s)
Aedes , Aprendizaje Profundo , Alas de Animales , Animales , Alas de Animales/anatomía & histología , Aedes/anatomía & histología , Aedes/clasificación , Procesamiento de Imagen Asistido por Computador/métodos , Mosquitos Vectores/clasificación , Mosquitos Vectores/anatomía & histología , Redes Neurales de la Computación , Teléfono Inteligente , Culicidae/clasificación , Culicidae/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA