Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.442
Filtrar
1.
Front Physiol ; 15: 1381164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606012

RESUMO

The mosquito Aedes aegypti is an important vector of diseases including dengue, Zika, chikungunya, and yellow fever. Olfaction is a critical modality for mosquitoes enabling them to locate hosts, sources of nectar, and sites for oviposition. GABA is an essential neurotransmitter in olfactory processing in the insect brain, including the primary olfactory center, the antennal lobe. Previous work with Ae. aegypti has suggested that antennal lobe inhibition via GABA may be involved in the processing of odors. However, little is known about GABA receptor expression in the mosquito brain, or how they may be involved in odor attraction. In this context, generating mutants that target the mosquito's olfactory responses, and particularly the GABAergic system, is essential to achieve a better understanding of these diverse processes and olfactory coding in these disease vectors. Here we demonstrate the potential of a transgenic line using the QF2 transcription factor, GABA-B1QF2-ECFP, as a new neurogenetic tool to investigate the neural basis of olfaction in Ae. aegypti. Our results show that the gene insertion has a moderate impact on mosquito fitness. Moreover, the line presented here was crossed with a QUAS reporter line expressing the green fluorescent protein and used to determine the location of the metabotropic GABA-B1 receptor expression. We find high receptor expression in the antennal lobes, especially the cell bodies surrounding the antennal lobes. In the mushroom bodies, receptor expression was high in the Kenyon cells, but had low expression in the mushroom body lobes. Behavioral experiments testing the fruit odor attractants showed that the mutants lost their behavioral attraction. Together, these results show that the GABA-B1QF2-ECFP line provides a new tool to characterize GABAergic systems in the mosquito nervous system.

2.
Biochem Biophys Res Commun ; 711: 149914, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38608434

RESUMO

The steroid hormone ecdysone is essential for the reproduction and survival of insects. The hormone is synthesized from dietary sterols such as cholesterol, yielding ecdysone in a series of consecutive enzymatic reactions. In the insect orders Lepidoptera and Diptera a glutathione transferase called Noppera-bo (Nobo) plays an essential, but biochemically uncharacterized, role in ecdysteroid biosynthesis. The Nobo enzyme is consequently a possible target in harmful dipterans, such as disease-carrying mosquitoes. Flavonoid compounds inhibit Nobo and have larvicidal effects in the yellow-fever transmitting mosquito Aedes aegypti, but the enzyme is functionally incompletely characterized. We here report that within a set of glutathione transferase substrates the double-bond isomerase activity with 5-androsten-3,17-dione stands out with an extraordinary specific activity of 4000 µmol min-1 mg-1. We suggest that the authentic function of Nobo is catalysis of a chemically analogous ketosteroid isomerization in ecdysone biosynthesis.

3.
G3 (Bethesda) ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626295

RESUMO

The mosquito Aedes aegypti is the primary vector of many human arboviruses such as dengue, yellow fever, chikungunya and Zika, which affect millions of people world-wide. Population genetics studies on this mosquito have been important in understanding its invasion pathways and success as a vector of human disease. The Axiom aegypti1 SNP chip was developed from a sample of geographically diverse Ae. aegypti populations to facilitate genomic studies on this species. We evaluate the utility of the Axiom aegypti1 SNP chip for population genetics and compare it with a low-depth shot-gun sequencing approach using mosquitoes from the native (Africa) and invasive range (outside Africa). These analyses indicate that results from the SNP chip are highly reproducible and have a higher sensitivity to capture alternative alleles than a low-coverage whole-genome sequencing approach. Although the SNP chip suffers from ascertainment bias, results from population structure, ancestry, demographic and phylogenetic analyses using the SNP chip were congruent with those derived from low coverage whole genome sequencing, and consistent with previous reports on Africa and outside Africa populations using microsatellites. More importantly, we identified a subset of SNPs that can be reliably used to generate merged databases, opening the door to combined analyses. We conclude that the Axiom aegypti1 SNP chip is a convenient, more accurate, low-cost alternative to low-depth whole genome sequencing for population genetic studies of Ae. aegypti that do not rely on full allelic frequency spectra. Whole genome sequencing and SNP chip data can be easily merged, extending the usefulness of both approaches.

4.
Rapid Commun Mass Spectrom ; 38(12): e9739, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38605205

RESUMO

RATIONALE: 4,7-Dichloroquinoline (DCQ) represents a group of synthetic molecules inspired by natural products with important roles in biological and biomedical areas. This work aimed to characterize DCQ and its derivatives by high-resolution electrospray ionization (ESI) mass spectrometry and tandem mass spectrometry (ESI-MS/MS), supported by theoretical calculations. Biological assays were carried out with DCQ and its derivatives to determine LC50 values against Aedes aegypti larvae. METHODS: Five DCQ derivatives were synthesized by using previously described protocols. ESI-MS/MS analyses were carried out with a quadrupole/time-of-flight and ion-trap instrument. The proposed gas-phase protonation sites and fragmentation were supported by density functional theory calculations. The larvicidal tests were performed with the Ae. aegypti Rockefeller strain, and the LC50 values were determined by employing five test concentrations. Larval mortality was determined after treatment for 48 h. RESULTS: DCQ bromides or aldehydes (C-3 or C-8 positions), as well as the trimethylsilyl derivative (C-3 position), were prepared. Detailed ESI-MS/MS data revealed heteroatom elimination through an exception to the even-electron rule, to originate open-shell species. Computational studies were used to define the protonation sites and fragmentation pathways. High activity of DCQ and its derivatives against Ae. aegypti larvae was demonstrated. CONCLUSION: Our results provided a well-founded characterization of the fragmentation reactions of DCQ and its derivatives, which can be useful for complementary studies of the development of a larvicidal product against Ae. aegypti.


Assuntos
Aedes , Espectrometria de Massas por Ionização por Electrospray , Animais , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Larva
5.
PLoS Pathog ; 20(4): e1011975, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557892

RESUMO

Arboviruses can emerge rapidly and cause explosive epidemics of severe disease. Some of the most epidemiologically important arboviruses, including dengue virus (DENV), Zika virus (ZIKV), Chikungunya (CHIKV) and yellow fever virus (YFV), are transmitted by Aedes mosquitoes, most notably Aedes aegypti and Aedes albopictus. After a mosquito blood feeds on an infected host, virus enters the midgut and infects the midgut epithelium. The virus must then overcome a series of barriers before reaching the mosquito saliva and being transmitted to a new host. The virus must escape from the midgut (known as the midgut escape barrier; MEB), which is thought to be mediated by transient changes in the permeability of the midgut-surrounding basal lamina layer (BL) following blood feeding. Here, we present a mathematical model of the within-mosquito population dynamics of DENV (as a model system for mosquito-borne viruses more generally) that includes the interaction of the midgut and BL which can account for the MEB. Our results indicate a dose-dependency of midgut establishment of infection as well as rate of escape from the midgut: collectively, these suggest that the extrinsic incubation period (EIP)-the time taken for DENV virus to be transmissible after infection-is shortened when mosquitoes imbibe more virus. Additionally, our experimental data indicate that multiple blood feeding events, which more closely mimic mosquito-feeding behavior in the wild, can hasten the course of infections, and our model predicts that this effect is sensitive to the amount of virus imbibed. Our model indicates that mutations to the virus which impact its replication rate in the midgut could lead to even shorter EIPs when double-feeding occurs. Mechanistic models of within-vector viral infection dynamics provide a quantitative understanding of infection dynamics and could be used to evaluate novel interventions that target the mosquito stages of the infection.


Assuntos
Aedes , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Trato Gastrointestinal , Mosquitos Vetores
6.
Sci Rep ; 14(1): 7709, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565882

RESUMO

The present study aimed at evaluating the YF-specific neutralizing antibody profile besides a multiparametric analysis of phenotypic/functional features of cell-mediated response elicited by the 1/5 fractional dose of 17DD-YF vaccine, administered as a single subcutaneous injection. The immunological parameters of each volunteer was monitored at two time points, referred as: before (Day 0) [Non-Vaccinated, NV(D0)] and after vaccination (Day 30-45) [Primary Vaccinees, PV(D30-45)]. Data demonstrated high levels of neutralizing antibodies for PV(D30-45) leading to a seropositivity rate of 93%. A broad increase of systemic soluble mediators with a mixed profile was also observed for PV(D30-45), with IFN-γ and TNF-α presenting the highest baseline fold changes. Integrative network mapping of soluble mediators showed increased correlation numbers in PV(D30-45) as compared to NV(D0) (532vs398). Moreover, PV(D30-45) exhibited increased levels of Terminal Effector (CD45RA+CCR7-) CD4+ and CD8+ T-cells and Non-Classical memory B-cells (IgD+CD27+). Dimensionality reduction of Mass Cytometry data further support these findings. A polyfunctional cytokine profile (TNF-α/IFN-γ/IL-10/IL-17/IL-2) of T and B-cells was observed upon in vitro antigen recall. Mapping and kinetics timeline of soluble mediator signatures for PV(D30-45) further confirmed the polyfunctional profile upon long-term in vitro culture, mediated by increased levels of IFN-γ and TNF-α along with decreased production of IL-10. These findings suggest novel insights of correlates of protection elicited by the 1/5 fractional dose of 17DD-YF vaccine.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Humanos , Adulto , Anticorpos Neutralizantes , Interleucina-10 , Anticorpos Antivirais , Fator de Necrose Tumoral alfa , Linfócitos T CD8-Positivos , Vacinação
7.
PLoS Negl Trop Dis ; 18(4): e0012053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557981

RESUMO

BACKGROUND: Mosquito-borne arboviruses are expanding their territory and elevating their infection prevalence due to the rapid climate change, urbanization, and increased international travel and global trade. Various significant arboviruses, including the dengue virus, Zika virus, Chikungunya virus, and yellow fever virus, are all reliant on the same primary vector, Aedes aegypti. Consequently, the occurrence of arbovirus coinfection in mosquitoes is anticipated. Arbovirus coinfection in mosquitoes has two patterns: simultaneous and sequential. Numerous studies have demonstrated that simultaneous coinfection of arboviruses in mosquitoes is unlikely to exert mutual developmental influence on these viruses. However, the viruses' interplay within a mosquito after the sequential coinfection seems intricated and not well understood. METHODOLOGY/PRINCIPAL FINDINGS: We conducted experiments aimed at examining the phenomenon of arbovirus sequential coinfection in both mosquito cell line (C6/36) and A. aegypti, specifically focusing on dengue virus (DENV, serotype 2) and Zika virus (ZIKV). We firstly observed that DENV and ZIKV can sequentially infect mosquito C6/36 cell line, but the replication level of the subsequently infected ZIKV was significantly suppressed. Similarly, A. aegypti mosquitoes can be sequentially coinfected by these two arboviruses, regardless of the order of virus exposure. However, the replication, dissemination, and the transmission potential of the secondary virus were significantly inhibited. We preliminarily explored the underlying mechanisms, revealing that arbovirus-infected mosquitoes exhibited activated innate immunity, disrupted lipid metabolism, and enhanced RNAi pathway, leading to reduced susceptibility to the secondary arbovirus infections. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that, in contrast to simultaneous arbovirus coinfection in mosquitoes that can promote the transmission and co-circulation of these viruses, sequential coinfection appears to have limited influence on arbovirus transmission dynamics. However, it is important to note that more experimental investigations are needed to refine and expand upon this conclusion.


Assuntos
Aedes , Arbovírus , Coinfecção , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Coinfecção/epidemiologia , Mosquitos Vetores , Dengue/epidemiologia
8.
J Virol ; : e0151623, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567951

RESUMO

The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.

9.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559089

RESUMO

Aedes aegypti is the main vector species of yellow fever, dengue, zika and chikungunya. The species is originally from Africa but has experienced a spectacular expansion in its geographic range to a large swath of the world, the demographic effects of which have remained largely understudied. In this report, we examine whole-genome sequences from 6 countries in Africa, North America, and South America to investigate the demographic history of the spread of Ae. aegypti into the Americas its impact on genomic diversity. In the Americas, we observe patterns of strong population structure consistent with relatively low (but probably non-zero) levels of gene flow but occasional long-range dispersal and/or recolonization events. We also find evidence that the colonization of the Americas has resulted in introduction bottlenecks. However, while each sampling location shows evidence of a past population contraction and subsequent recovery, our results suggest that the bottlenecks in America have led to a reduction in genetic diversity of only ~35% relative to African populations, and the American samples have retained high levels of genetic diversity (expected heterozygosity of ~0.02 at synonymous sites) and have experienced only a minor reduction in the efficacy of selection. These results evoke the image of an invasive species that has expanded its range with remarkable genetic resilience in the face of strong eradication pressure.

10.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559113

RESUMO

Factors that contribute to durable immunological memory remain incompletely understood. In our longitudinal analyses of CD4+ T cell responses to the yellow fever virus (YFV) vaccine by peptide-MHC tetramers, we unexpectedly found naïve phenotype virus-specific CD4+ T cells that persisted months to years after immunization. These Marker negative T cells (TMN) lacked CD95, CXCR3, CD11a, and CD49d surface protein expression, distinguishing them from previously discovered stem-cell memory T cells. Functionally, they resembled genuine naïve T cells upon in vitro stimulation. Single-cell TCR sequencing detected expanded clonotypes within the TMN subset and identified a shared repertoire with memory and effector T cells. T cells expressing TMN-associated TCRs were rare before vaccination, suggesting their expansion following vaccination. Longitudinal tracking of YFV-specific responses over the subsequent years revealed superior stability of the TMN subset and their association with the longevity of the overall population. The identification of these long-lived, antigen-experienced T cells may inform the design of durable T cell-based vaccines and engineered T cell therapies.

11.
Biologicals ; 86: 101765, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593685

RESUMO

Yellow fever (YF) is one of the most acute viral hemorrhagic diseases of the 18th and 19th centuries, which continues to cause severe morbidity and mortality in Africa. After 21 years of no reported cases of yellow fever in Nigeria, till 2017 where a case was confirmed in Kwara State, also in November 2018,WHO was informed of a cluster of suspected yellow fever cases and deaths in Edo state, Nigeria. The study was among all age group attending health centres in Benin City, Edo state. A total of 280 blood samples were collected from consented febrile patients and were screened for antibodies to Zika virus using rapid diagnostic test (RDT) kits. Blood samples positive to Zika virus (IgM/IgG RDT), were subjected to molecular characterization. Using the flavividae family primers, six (6) samples where confirmed positive by Hemi-nested reverse transcription PCR (hnRT-PCR) sequencing. Nucleotide sequence blast revealed the sequenceswere similar to Yellow fever virus strains. Phylogenetic analysis revealed that the yellow fever virus sequences are closely related to the African strains. Despite the safe and effective yellow fever vaccine, yellow fever virus is seen to be in circulation, hence the need for continues mass vaccination.

12.
IJID Reg ; 11: 100360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38596820

RESUMO

Objectives: Our study targets the potential of the local urban mosquito Aedes aegypti to experimentally transmit chikungunya virus (CHIKV), dengue virus (DENV), yellow fever virus (YFV), and Zika virus (ZIKV). Methods: We collected eggs and adults of Ae. aegypti in Medellín, Colombia (from February to March 2020) for mosquito experimental infections with DENV, CHIKV, YFV and ZIKV and viral detection using the BioMark Dynamic arrays system. Results: We show that Ae. aegypti from Medellín was more prone to become infected, to disseminate and transmit CHIKV and ZIKV than DENV and YFV. Conclusions: Thus, in Colombia, chikungunya is the most serious threat to public health based on our vector competence data.

13.
Parasit Vectors ; 17(1): 171, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566239

RESUMO

BACKGROUND: Identification of mosquitoes greatly relies on morphological specification. Since some species cannot be distinguished reliably by morphological methods, it is important to incorporate molecular techniques into the diagnostic pipeline. DNA barcoding using Sanger sequencing is currently widely used for identification of mosquito species. However, this method does not allow detection of multiple species in one sample, which would be important when analysing mosquito eggs. Detection of container breeding Aedes is typically performed by collecting eggs using ovitraps. These traps consist of a black container filled with water and a wooden spatula inserted for oviposition support. Aedes mosquitoes of different species might lay single or multiple eggs on the spatula. In contrast to Sanger sequencing of specific polymerase chain reaction (PCR) products, multiplex PCR protocols targeting specific species of interest can be of advantage for detection of multiple species in the same sample. METHODS: For this purpose, we adapted a previously published PCR protocol for simultaneous detection of four different Aedes species that are relevant for Austrian monitoring programmes, as they can be found in ovitraps: Aedes albopictus, Aedes japonicus, Aedes koreicus, and Aedes geniculatus. For evaluation of the multiplex PCR protocol, we analysed 2271 ovitrap mosquito samples from the years 2021 and 2022, which were collected within the scope of an Austrian nationwide monitoring programme. We compared the results of the multiplex PCR to the results of DNA barcoding. RESULTS: Of 2271 samples, the multiplex PCR could identify 1990 samples, while species determination using DNA barcoding of the mitochondrial cytochrome c oxidase subunit I gene was possible in 1722 samples. The multiplex PCR showed a mixture of different species in 47 samples, which could not be detected with DNA barcoding. CONCLUSIONS: In conclusion, identification of Aedes species in ovitrap samples was more successful when using the multiplex PCR protocol as opposed to the DNA barcoding protocol. Additionally, the multiplex PCR allowed us to detect multiple species in the same sample, while those species might have been missed when using DNA barcoding with Sanger sequencing alone. Therefore, we propose that the multiplex PCR protocol is highly suitable and of great advantage when analysing mosquito eggs from ovitraps.


Assuntos
Aedes , Código de Barras de DNA Taxonômico , Feminino , Animais , Reação em Cadeia da Polimerase Multiplex , Óvulo , Aedes/genética , Mosquitos Vetores/genética
14.
BMC Genomics ; 25(1): 336, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570743

RESUMO

The Asian tiger mosquito, Aedes albopictus, is a global invasive species, notorious for its role in transmitting dangerous human arboviruses such as dengue and Chikungunya. Although hematophagous behavior is repulsive, it is an effective strategy for mosquitoes like Aedes albopictus to transmit viruses, posing a significant risk to human health. However, the fragmented nature of the Ae. albopictus genome assembly has been a significant challenge, hindering in-depth biological and genetic studies of this mosquito. In this research, we have harnessed a variety of technologies and implemented a novel strategy to create a significantly improved genome assembly for Ae. albopictus, designated as AealbF3. This assembly boasts a completeness rate of up to 98.1%, and the duplication rate has been minimized to 1.2%. Furthermore, the fragmented contigs or scaffolds of AealbF3 have been organized into three distinct chromosomes, an arrangement corroborated through syntenic plot analysis, which compared the genetic structure of Ae. albopictus with that of Ae. aegypti. Additionally, the study has revealed a phylogenetic relationship suggesting that the PGANT3 gene is implicated in the hematophagous behavior of Ae. albopictus. This involvement was preliminarily substantiated through RNA interference (RNAi) techniques and behavioral experiment. In summary, the AealbF3 genome assembly will facilitate new biological insights and intervention strategies for combating this formidable vector of disease. The innovative assembly process employed in this study could also serve as a valuable template for the assembly of genomes in other insects characterized by high levels of heterozygosity.


Assuntos
Aedes , Mosquitos Vetores , Animais , Humanos , Mosquitos Vetores/genética , Filogenia , Comportamento Alimentar
15.
Cochrane Database Syst Rev ; 4: CD015636, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597256

RESUMO

BACKGROUND: Dengue is a global health problem of high significance, with 3.9 billion people at risk of infection. The geographic expansion of dengue virus (DENV) infection has resulted in increased frequency and severity of the disease, and the number of deaths has increased in recent years. Wolbachia,an intracellular bacterial endosymbiont, has been under investigation for several years as a novel dengue-control strategy. Some dengue vectors (Aedes mosquitoes) can be transinfected with specific strains of Wolbachia, which decreases their fitness (ability to survive and mate) and their ability to reproduce, inhibiting the replication of dengue. Both laboratory and field studies have demonstrated the potential effect of Wolbachia deployments on reducing dengue transmission, and modelling studies have suggested that this may be a self-sustaining strategy for dengue prevention, although long-term effects are yet to be elucidated. OBJECTIVES: To assess the efficacy of Wolbachia-carrying Aedes speciesdeployments (specifically wMel-, wMelPop-, and wAlbB- strains of Wolbachia) for preventing dengue virus infection. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, four other databases, and two trial registries up to 24 January 2024. SELECTION CRITERIA: Randomized controlled trials (RCTs), including cluster-randomized controlled trials (cRCTs), conducted in dengue endemic or epidemic-prone settings were eligible. We sought studies that investigated the impact of Wolbachia-carrying Aedes deployments on epidemiological or entomological dengue-related outcomes, utilizing either the population replacement or population suppression strategy. DATA COLLECTION AND ANALYSIS: Two review authors independently selected eligible studies, extracted data, and assessed the risk of bias using the Cochrane RoB 2 tool. We used odds ratios (OR) with the corresponding 95% confidence intervals (CI) as the effect measure for dichotomous outcomes. For count/rate outcomes, we planned to use the rate ratio with 95% CI as the effect measure. We used adjusted measures of effect for cRCTs. We assessed the certainty of evidence using GRADE. MAIN RESULTS: One completed cRCT met our inclusion criteria, and we identified two further ongoing cRCTs. The included trial was conducted in an urban setting in Yogyakarta, Indonesia. It utilized a nested test-negative study design, whereby all participants aged three to 45 years who presented at healthcare centres with a fever were enrolled in the study provided they had resided in the study area for the previous 10 nights. The trial showed that wMel-Wolbachia infected Ae aegypti deployments probably reduce the odds of contracting virologically confirmed dengue by 77% (OR 0.23, 95% CI 0.15 to 0.35; 1 trial, 6306 participants; moderate-certainty evidence). The cluster-level prevalence of wMel Wolbachia-carrying mosquitoes remained high over two years in the intervention arm of the trial, reported as 95.8% (interquartile range 91.5 to 97.8) across 27 months in clusters receiving wMel-Wolbachia Ae aegypti deployments, but there were no reliable comparative data for this outcome. Other primary outcomes were the incidence of virologically confirmed dengue, the prevalence of dengue ribonucleic acid in the mosquito population, and mosquito density, but there were no data for these outcomes. Additionally, there were no data on adverse events. AUTHORS' CONCLUSIONS: The included trial demonstrates the potential significant impact of wMel-Wolbachia-carrying Ae aegypti mosquitoes on preventing dengue infection in an endemic setting, and supports evidence reported in non-randomized and uncontrolled studies. Further trials across a greater diversity of settings are required to confirm whether these findings apply to other locations and country settings, and greater reporting of acceptability and cost are important.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Animais , Humanos , Aedes/microbiologia , Mosquitos Vetores/microbiologia , Dengue/prevenção & controle
16.
Viral Immunol ; 37(3): 167-175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574259

RESUMO

Zika virus (ZIKV) is an emerging flavivirus associated with several neurological diseases such as Guillain-Barré syndrome in adults and microcephaly in newborn children. Its distribution and mode of transmission (via Aedes aegypti and Aedes albopictus mosquitoes) collectively cause ZIKV to be a serious concern for global health. High genetic homology of flaviviruses and shared ecology is a hurdle for accurate detection. Distinguishing infections caused by different viruses based on serological recognition can be misleading as many anti-flavivirus monoclonal antibodies (mAbs) discovered to date are highly cross-reactive, especially those against the envelope (E) protein. To provide more specific research tools, we produced ZIKV E directed hybridoma cell lines and characterized two highly ZIKV-specific mAb clones (mAbs A11 and A42) against several members of the Flavivirus genus. Epitope mapping of mAb A11 revealed glycan loop specificity in Domain I of the ZIKV E protein. The development of two highly specific mAbs targeting the surface fusion protein of ZIKV presents a significant advancement in research capabilities as these can be employed as essential tools to enhance our understanding of ZIKV identification on infected cells ex vivo or in culture.


Assuntos
Aedes , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Recém-Nascido , Humanos , Proteínas do Envelope Viral , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais
17.
Proc Natl Acad Sci U S A ; 121(16): e2317978121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593069

RESUMO

Mosquito-borne flaviviruses such as dengue (DENV) and Zika (ZIKV) cause hundreds of millions of infections annually. The single-stranded RNA genome of flaviviruses is translated into a polyprotein, which is cleaved equally into individual functional proteins. While structural proteins are packaged into progeny virions and released, most of the nonstructural proteins remain intracellular and could become cytotoxic if accumulated over time. However, the mechanism by which nonstructural proteins are maintained at the levels optimal for cellular fitness and viral replication remains unknown. Here, we identified that the ubiquitin E3 ligase HRD1 is essential for flaviviruses infections in both mammalian hosts and mosquitoes. HRD1 directly interacts with flavivirus NS4A and ubiquitylates a conserved lysine residue for ER-associated degradation. This mechanism avoids excessive accumulation of NS4A, which otherwise interrupts the expression of processed flavivirus proteins in the ER. Furthermore, a small-molecule inhibitor of HRD1 named LS-102 effectively interrupts DENV2 infection in both mice and Aedes aegypti mosquitoes, and significantly disturbs DENV transmission from the infected hosts to mosquitoes owing to reduced viremia. Taken together, this study demonstrates that flaviviruses have evolved a sophisticated mechanism to exploit the ubiquitination system to balance the homeostasis of viral proteins for their own advantage and provides a potential therapeutic target to interrupt flavivirus infection and transmission.


Assuntos
Aedes , Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Camundongos , Flavivirus/genética , Zika virus/genética , Ubiquitina/metabolismo , Ligases/metabolismo , Proteínas Virais/metabolismo , Mamíferos
18.
BMC Genomics ; 25(1): 353, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594632

RESUMO

Mosquitoes are prolific vectors of human pathogens, therefore a clear and accurate understanding of the organization of their antimicrobial defenses is crucial for informing the development of transmission control strategies. The canonical infection response in insects, as described in the insect model Drosophila melanogaster, is pathogen type-dependent, with distinct stereotypical responses to Gram-negative bacteria and Gram-positive bacteria/fungi mediated by the activation of the Imd and Toll pathways, respectively. To determine whether this pathogen-specific discrimination is shared by mosquitoes, we used RNAseq to capture the genome-wide transcriptional response of Aedes aegypti and Anopheles gambiae (s.l.) to systemic infection with Gram-negative bacteria, Gram-positive bacteria, yeasts, and filamentous fungi, as well as challenge with heat-killed Gram-negative, Gram-positive, and fungal pathogens. From the resulting data, we found that Ae. aegypti and An. gambiae both mount a core response to all categories of infection, and this response is highly conserved between the two species with respect to both function and orthology. When we compared the transcriptomes of mosquitoes infected with different types of bacteria, we observed that the intensity of the transcriptional response was correlated with both the virulence and growth rate of the infecting pathogen. Exhaustive comparisons of the transcriptomes of Gram-negative-challenged versus Gram-positive-challenged mosquitoes yielded no difference in either species. In Ae. aegypti, however, we identified transcriptional signatures specific to bacterial infection and to fungal infection. The bacterial infection response was dominated by the expression of defensins and cecropins, while the fungal infection response included the disproportionate upregulation of an uncharacterized family of glycine-rich proteins. These signatures were also observed in Ae. aegypti challenged with heat-killed bacteria and fungi, indicating that this species can discriminate between molecular patterns that are specific to bacteria and to fungi.


Assuntos
Aedes , Infecções Bacterianas , Micoses , Animais , Humanos , Drosophila melanogaster , Mosquitos Vetores/genética , Aedes/genética , Aedes/microbiologia , Bactérias , Fungos/genética
19.
Proc Biol Sci ; 291(2021): 20240429, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628128

RESUMO

The global expansion of Aedes albopictus has stimulated the development of environmentally friendly methods aiming to control disease transmission through the suppression of natural vector populations. Sterile male release programmes are currently being deployed worldwide, and are challenged by the availability of an efficient sex separation which can be achieved mechanically at the pupal stage and/or by artificial intelligence at the adult stage, or through genetic sexing, which allows separating males and females at an early development stage. In this study, we combined the genetic sexing strain previously established based on the linkage of dieldrin resistance to the male locus with a Wolbachia transinfected line. For this, we introduced either the wPip-I or the wPip-IV strain from Culex pipiens in an asymbiotic Wolbachia-free Ae. albopictus line. We then measured the penetrance of cytoplasmic incompatibility and life-history traits of both transinfected lines, selected the wPip-IV line and combined it with the genetic sexing strain. Population suppression experiments demonstrated a 90% reduction in population size and a 50% decrease in hatching rate. Presented results showed that such a combination has a high potential in terms of vector control but also highlighted associated fitness costs, which should be reduced before large-scale field assay.


Assuntos
Aedes , Culex , Wolbachia , Animais , Feminino , Masculino , Wolbachia/genética , Inteligência Artificial , Aedes/genética
20.
Front Cell Infect Microbiol ; 14: 1360438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562961

RESUMO

Background: The Philippines bears health and economic burden caused by high dengue cases annually. Presently, the Philippines still lack an effective and sustainable vector management. The use of Wolbachia, a maternally transmitted bacterium, that mitigate arbovirus transmission has been recommended. Cytoplasmic incompatibility and viral blocking, two characteristics that make Wolbachia suitable for vector control, depend on infection prevalence and density. There are no current Wolbachia release programs in the Philippines, and studies regarding the safety of this intervention. Here, we screened for Wolbachia in Aedes aegypti collected from Metropolitan Manila, Philippines. We designed location-specific primers for qPCR to test whether this improved Wolbachia detection in Ae. aegypti. We explored if host sex and Wolbachia strain could be potential factors affecting Wolbachia density. Methods: Ae. aegypti mosquitoes (n=429) were screened for natural Wolbachia by taqman qPCR using location-specific Wolbachia surface protein primers (wspAAML) and known 16S rRNA primers. Samples positive for wspAAML (n=267) were processed for Sanger sequencing. We constructed a phylogenetic tree using IQ-TREE 2 to further characterize Wolbachia present in the Philippine Ae. aegypti. We then compared Wolbachia densities between Wolbachia groups and host sex. Statistical analyses were done using GraphPad Prism 9.0. Results: Wolbachia prevalence for 16S rRNA (40%) and wspAAML (62%) markers were high. Wolbachia relative densities for 16S rRNA ranged from -3.84 to 2.71 and wspAAML from -4.02 to 1.81. Densities were higher in male than female mosquitoes. Wolbachia strains detected in Ae. aegypti clustered into supergroup B. Some 54% (123/226) of these sequences clustered under a group referred to here as "wAegML," that belongs to the supergroup B, which had a significantly lower density than wAegB/wAlbB, and wAlbA strains. Conclusion: Location-specific primers improved detection of natural Wolbachia in Ae. aegypti and allowed for relative quantification. Wolbachia density is relatively low, and differed between host sexes and Wolbachia strains. An economical way of confirming sporadic or transient Wolbachia in Ae. aegypti is necessary while considering host sex and bacterial strain.


Assuntos
Aedes , Wolbachia , Animais , Humanos , Aedes/microbiologia , Wolbachia/genética , Filipinas , RNA Ribossômico 16S/genética , Mosquitos Vetores , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...