Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.356
Filter
1.
Cells ; 13(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38607037

ABSTRACT

Zika virus (ZIKV) infection and pathogenesis are linked to the disruption of neurogenesis, congenital Zika syndrome and microcephaly by affecting neural progenitor cells. Nonstructural protein 5 (NS5) is the largest product encoded by ZIKV-RNA and is important for replication and immune evasion. Here, we studied the potential effects of NS5 on microtubules (MTs) and autophagy flux, together with the interplay of NS5 with histone deacetylase 6 (HDAC6). Fluorescence microscopy, biochemical cell-fractionation combined with the use of HDAC6 mutants, chemical inhibitors and RNA interference indicated that NS5 accumulates in nuclear structures and strongly promotes the acetylation of MTs that aberrantly reorganize in nested structures. Similarly, NS5 accumulates the p62 protein, an autophagic-flux marker. Therefore, NS5 alters events that are under the control of the autophagic tubulin-deacetylase HDAC6. HDAC6 appears to degrade NS5 by autophagy in a deacetylase- and BUZ domain-dependent manner and to control the cytoplasmic expression of NS5. Moreover, NS5 inhibits RNA-mediated RIG-I interferon (IFN) production, resulting in greater activity when autophagy is inhibited (i.e., effect correlated with NS5 stability). Therefore, it is conceivable that NS5 contributes to cell toxicity and pathogenesis, evading the IFN-immune response by overcoming HDAC6 functions. HDAC6 has emerged as an anti-ZIKV factor by targeting NS5.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Zika Virus/physiology , Histone Deacetylase 6 , Tubulin , Microtubules , RNA , Autophagy
2.
J Virol ; : e0019424, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567950

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10× Genomics Chromium single-cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human monocyte-derived dendritic cells infected with ZIKV at the single-cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN-dependent and -independent genes (the antiviral module). We modeled the ZIKV-specific antiviral state at the protein level, leveraging experimentally derived protein interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per-cell basis with experimental protein interaction data. IMPORTANCE: Zika virus (ZIKV) remains a public health threat given its potential for re-emergence and the detrimental fetal outcomes associated with infection during pregnancy. Understanding the dynamics between ZIKV and its host is critical to understanding ZIKV pathogenesis. Through ZIKV-inclusive single-cell RNA sequencing (scRNA-seq), we demonstrate on the single-cell level the dynamic interplay between ZIKV and the host: the transcriptional program that restricts viral infection and ZIKV-mediated inhibition of that response. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool for gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.

3.
Viral Immunol ; 37(3): 167-175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574259

ABSTRACT

Zika virus (ZIKV) is an emerging flavivirus associated with several neurological diseases such as Guillain-Barré syndrome in adults and microcephaly in newborn children. Its distribution and mode of transmission (via Aedes aegypti and Aedes albopictus mosquitoes) collectively cause ZIKV to be a serious concern for global health. High genetic homology of flaviviruses and shared ecology is a hurdle for accurate detection. Distinguishing infections caused by different viruses based on serological recognition can be misleading as many anti-flavivirus monoclonal antibodies (mAbs) discovered to date are highly cross-reactive, especially those against the envelope (E) protein. To provide more specific research tools, we produced ZIKV E directed hybridoma cell lines and characterized two highly ZIKV-specific mAb clones (mAbs A11 and A42) against several members of the Flavivirus genus. Epitope mapping of mAb A11 revealed glycan loop specificity in Domain I of the ZIKV E protein. The development of two highly specific mAbs targeting the surface fusion protein of ZIKV presents a significant advancement in research capabilities as these can be employed as essential tools to enhance our understanding of ZIKV identification on infected cells ex vivo or in culture.


Subject(s)
Aedes , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Infant, Newborn , Humans , Viral Envelope Proteins , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral
4.
PLoS Negl Trop Dis ; 18(4): e0012100, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635656

ABSTRACT

Zika virus (ZIKV), an arbovirus from the Flaviviridae family, is the causative agent of Zika fever, a mild and frequent oligosymptomatic disease in humans. Nonetheless, on rare occasions, ZIKV infection can be associated with Guillain-Barré Syndrome (GBS), and severe congenital complications, such as microcephaly. The oligosymptomatic disease, however, presents symptoms that are quite similar to those observed in infections caused by other frequent co-circulating arboviruses, including dengue virus (DENV). Moreover, the antigenic similarity between ZIKV and DENV, and even with other members of the Flaviviridae family, complicates serological testing due to the high cross-reactivity of antibodies. Here, we designed, produced in a prokaryotic expression system, and purified three multiepitope proteins (ZIKV-1, ZIKV-2, and ZIKV-3) for differential diagnosis of Zika. The proteins were evaluated as antigens in ELISA tests for the detection of anti-ZIKV IgG using ZIKV- and DENV-positive human sera. The recombinant proteins were able to bind and detect anti-ZIKV antibodies without cross-reactivity with DENV-positive sera and showed no reactivity with Chikungunya virus (CHIKV)- positive sera. ZIKV-1, ZIKV-2, and ZIKV-3 proteins presented 81.6%, 95%, and 66% sensitivity and 97%, 96%, and 84% specificity, respectively. Our results demonstrate the potential of the designed and expressed antigens in the development of specific diagnostic tests for the detection of IgG antibodies against ZIKV, especially in regions with the circulation of multiple arboviruses.


Subject(s)
Arboviruses , Chikungunya Fever , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Humans , Zika Virus Infection/diagnosis , Zika Virus/genetics , Epitopes , Antibodies, Viral , Immunoglobulin G
5.
Microorganisms ; 12(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38543474

ABSTRACT

Zika virus (ZIKV) can cause neurological issues in infants. To provide protection, neutralizing antibodies should be transferred from the mother to the infant. We conducted a study at the Hospital General de Pochutla, Oaxaca, Mexico. Samples were collected from mothers (blood and breast milk) and infants (saliva and dried blood spots) within the first 12 postnatal hours (December 2017 to February 2018) and tested for ZIKV total and neutralizing antibodies as well as ZIKV-PCR. Microcephaly was evaluated according to INTERGROWTH-21st standards. Maternal IgG seroprevalence was 28.4% with 10.4% active infection, while infant IgG seroprevalence was 5.5% with 2.4% active infection. There were two cases of virolactia, and 6.3% of the infant saliva samples tested positive for ZIKV. Additionally, 18.3% of the infants were in a cephalic perimeter percentile lower than 10 and had an association between microcephaly and serology or a PCR between 8.6 and 60.9%. The infant blood samples had neutralizing antibodies, indicating intrauterine protection. Microcephaly was correlated with serology or PCR, but in our study population, non-ZIKV factors may be involved as well. Low ZIKV infection values in breast milk mean that breastfeeding is safe in most of the mothers and infants of the endemic area studied.

6.
Comput Biol Med ; 173: 108259, 2024 May.
Article in English | MEDLINE | ID: mdl-38522248

ABSTRACT

Despite efforts to elucidate Zika virus (ZIKV) teratogenesis, still several issues remain unresolved, particularly on the molecular mechanisms behind the pathogenesis of Congenital Zika Syndrome (CZS). To answer this question, we used bioinformatics tools, animal experiments and human gene expression analysis to investigate genes related to brain development potentially involved in CZS. Searches in databases for genes related to brain development and CZS were performed, and a protein interaction network was created. The expression of these genes was analyzed in a CZS animal model and secondary gene expression analysis (DGE) was performed in human cells exposed to ZIKV. A total of 2610 genes were identified in the databases, of which 1013 were connected. By applying centrality statistics of the global network, 36 candidate genes were identified, which, after selection resulted in nine genes. Gene expression analysis revealed distinctive expression patterns for PRKDC, PCNA, ATM, SMC3 as well as for FGF8 and SHH in the CZS model. Furthermore, DGE analysis altered expression of ATM, PRKDC, PCNA. In conclusion, systems biology are helpful tools to identify candidate genes to be validated in vitro and in vivo. PRKDC, PCNA, ATM, SMC3, FGF8 and SHH have altered expression in ZIKV-induced brain malformations.


Subject(s)
Pregnancy Complications, Infectious , Teratogenesis , Zika Virus Infection , Zika Virus , Pregnancy , Female , Animals , Humans , Zika Virus/genetics , Zika Virus Infection/genetics , Proliferating Cell Nuclear Antigen
7.
Birth Defects Res ; 116(3): e2320, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476096

ABSTRACT

BACKGROUND: In response to the 2015-2017 Zika virus outbreak, New York City (NYC) identified and monitored infants with birth defects potentially related to congenital Zika virus. METHODS: Administrative data matches were used to describe the birth characteristics of children born in 2016 meeting screening criteria for birth defects potentially related to congenital Zika virus infection relative to other NYC births and to monitor mortality and Early Intervention Program use through age 2. RESULTS: Among 120,367 children born in NYC in 2016, 463 met screening criteria and 155 met the Centers for Disease Control and Prevention's case definition for birth defects potentially related to congenital Zika virus infection (1.3 per 1000; 95% confidence interval [CI], 1.1-1.5). Post-neonatal deaths occurred among 7.7% of cases (12) and 5.2% of non-cases (8). Odds of referral to the Early intervention Program among children who met screening criteria were lower among children of mothers who were married (OR, 0.60; 95% CI, 0.37-0.97) and among children not classified as cases whose mothers were born in Latin America and the Caribbean (OR, 0.59; 95% CI, 0.37-1.09). DISCUSSION: Prevalence of birth defects potentially related to congenital Zika virus infection was similar to that seen in other jurisdictions without local transmission. Birth defects attributable to congenital Zika virus infection may also have been present among screened children who did not meet the case definition.


Subject(s)
Microcephaly , Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Infant, Newborn , Infant , Pregnancy , Female , Child , Humans , Child, Preschool , Zika Virus Infection/epidemiology , New York City , Birth Cohort , Early Medical Intervention , Microcephaly/epidemiology
8.
Braz Oral Res ; 38: e020, 2024.
Article in English | MEDLINE | ID: mdl-38477806

ABSTRACT

The aim of the present study was to compare the oral conditions of children with congenital Zika syndrome (CZS)-associated microcephaly, non-CZS-associated microcephaly, and normotypical children, as well as to characterize their sociodemographic aspects and medical history. A paired cross-sectional study was carried out on 14 children with CZS-associated microcephaly and 24 age-matched controls, in Belo Horizonte, in southeastern Brazil. Children's oral conditions were assessed: dental caries experience (dmft/DMFT indices); developmental defects of enamel (DDE) index; dental anomalies; mucosal changes; lip sealing, and malocclusion (overjet, overbite, and/or posterior crossbite alterations). The quality of oral hygiene was analyzed by the simplified oral hygiene index. The children's mothers also answered a questionnaire about sociodemographic and medical history data. The variables were analyzed descriptively. Female participants were more prevalent (60.5%), and the mean age of the participants was 4.9 years (±1.4) (range: 2-8 years) and 92.1% of their exhibited some oral condition. All participants with CZS-associated microcephaly showed absence of lip sealing and had malocclusion (100.0%). When compared to the other groups, children with CZS had a higher percentage of dental anomalies (35.7%), mucosal changes (71.4%), and unsatisfactory oral hygiene (64.3%). In a sample composed mainly of female participants aged less than 5 years, the prevalence of oral conditions and unsatisfactory oral hygiene was higher in the group with CZS-associated microcephaly, followed by the group with non-CZS-associated microcephaly. Normotypical children had the highest percentage of dental caries experience.


Subject(s)
Dental Caries , Malocclusion , Microcephaly , Zika Virus Infection , Zika Virus , Child , Female , Humans , Child, Preschool , Cross-Sectional Studies
9.
Molecules ; 29(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38474490

ABSTRACT

The Zika virus (ZIKV) is a mosquito-borne virus that already poses a danger to worldwide human health. Patients infected with ZIKV generally have mild symptoms like a low-grade fever and joint pain. However, severe symptoms can also occur, such as Guillain-Barré syndrome, neuropathy, and myelitis. Pregnant women infected with ZIKV may also cause microcephaly in newborns. To date, we still lack conventional antiviral drugs to treat ZIKV infections. Marine natural products have novel structures and diverse biological activities. They have been discovered to have antibacterial, antiviral, anticancer, and other therapeutic effects. Therefore, marine products are important resources for compounds for innovative medicines. In this study, we identified a marine natural product, harzianopyridone (HAR), that could inhibit ZIKV replication with EC50 values from 0.46 to 2.63 µM while not showing obvious cytotoxicity in multiple cellular models (CC50 > 45 µM). Further, it also reduced the expression of viral proteins and protected cells from viral infection. More importantly, we found that HAR directly bound to the ZIKV RNA-dependent RNA polymerase (RdRp) and suppressed its polymerase activity. Collectively, our findings provide HAR as an option for the development of anti-ZIKV drugs.


Subject(s)
Biological Products , Pyridones , Zika Virus Infection , Zika Virus , Animals , Humans , Female , Infant, Newborn , Pregnancy , Antiviral Agents/pharmacology , RNA-Dependent RNA Polymerase/metabolism , Biological Products/pharmacology , Virus Replication
10.
P R Health Sci J ; 43(1): 54-56, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38512762

ABSTRACT

We report on the first case of congenital Zika syndrome to be identified during the COVID-19 pandemic in Puerto Rico. The Zika virus (ZIKV) infection was first seen in Puerto Rico in December 2015. It is a flavivirus with vertical transmission, spreading from infected mothers to their fetuses and having a broad spectrum of clinical manifestations, of which microcephaly is the most worrisome. In Puerto Rico, routine ZIKV screening during pregnancy was implemented in October 2016. However, this practice has become less frequent over time. Nevertheless, the transmission of ZIKV continues, so it is important to ensure routine ZIKV screening in endemic regions, such as Puerto Rico.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Pregnancy , Infant , Female , Humans , Infant, Newborn , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Pandemics , COVID-19/epidemiology , Infant, Premature , COVID-19 Testing
11.
PLoS One ; 19(3): e0290209, 2024.
Article in English | MEDLINE | ID: mdl-38512822

ABSTRACT

Zika virus (ZIKV) outbreak caused one of the most significant medical emergencies in the Americas due to associated microcephaly in newborns. To evaluate the impact of ZIKV infection on neuronal cells over time, we retrieved gene expression data from several ZIKV-infected samples obtained at different time point post-infection (pi). Differential gene expression analysis was applied at each time point, with more differentially expressed genes (DEG) identified at 72h pi. There were 5 DEGs (PLA2G2F, TMEM71, PKD1L2, UBD, and TNFAIP3 genes) across all timepoints, which clearly distinguished between infected and healthy samples. The highest expression levels of all five genes were identified at 72h pi. Taken together, our results indicate that ZIKV infection greatly impacts human neural cells at early times of infection, with peak perturbation observed at 72h pi. Our analysis revealed that all five DEGs, in samples of ZIKV-infected human neural stem cells, remained highly upregulated across the timepoints evaluated. Moreover, despite the pronounced inflammatory host response observed throughout infection, the impact of ZIKV is variable over time. Finally, the five DEGs identified herein play prominent roles in infection, and could serve to guide future investigations into virus-host interaction, as well as constitute targets for therapeutic drug development.


Subject(s)
Microcephaly , Zika Virus Infection , Zika Virus , Infant, Newborn , Humans , Zika Virus/genetics , Zika Virus Infection/epidemiology , Neurons/metabolism , Gene Expression
12.
Pediatr Res ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509227

ABSTRACT

Pregnant individuals with viral illness may experience significant morbidity and have higher rates of pregnancy and neonatal complications. With the growing number of viral infections and new viral pandemics, it is important to examine the effects of infection during pregnancy on both the gestational parent and the offspring. Febrile illness and inflammation during pregnancy are correlated with risk for autism, attention deficit/hyperactivity disorder, and developmental delay in the offspring in human and animal models. Historical viral epidemics had limited follow-up of the offspring of affected pregnancies. Infants exposed to seasonal influenza and the 2009 H1N1 influenza virus experienced increased risks of congenital malformations and neuropsychiatric conditions. Zika virus exposure in utero can lead to a spectrum of abnormalities, ranging from severe microcephaly to neurodevelopmental delays which may appear later in childhood and in the absence of Zika-related birth defects. Vertical infection with severe acute respiratory syndrome coronavirus-2 has occurred rarely, but there appears to be a risk for developmental delays in the infants with antenatal exposure. Determining how illness from infection during pregnancy and specific viral pathogens can affect pregnancy and neurodevelopmental outcomes of offspring can better prepare the community to care for these children as they grow. IMPACT: Viral infections have impacted pregnant people and their offspring throughout history. Antenatal exposure to maternal fever and inflammation may increase risk of developmental and neurobehavioral disorders in infants and children. The recent SARS-CoV-2 pandemic stresses the importance of longitudinal studies to follow pregnancies and offspring neurodevelopment.

13.
Antiviral Res ; 225: 105855, 2024 May.
Article in English | MEDLINE | ID: mdl-38460762

ABSTRACT

Zika virus (ZIKV) is an enveloped, single-stranded and positive-stranded RNA virus of the genus Flavivirus in the family Flaviviridae. ZIKV can cross the placental barrier and infect the fetus, causing microcephaly, congenital ZIKV syndrome, and even fetal death. ZIKV infection can also lead to testicular damage and male sterility. But no effective drugs and vaccines are available up to now. Previous studies have shown that the cathelicidin antimicrobial peptide LL-37 can protect against ZIKV infection. However, LL-37 is a secreted peptide, which can be easily degraded in vivo. We herein constructed exosome-loaded LL-37 (named LL-37-TM-exo and TM-LL-37-exo) using the transmembrane protein TM to load LL-37 onto the membrane of exosome. We found that exosome-loaded LL-37 could significantly inhibit ZIKV infection in vitro and in vivo, and LL-37-TM-exo had stronger antiviral activity than that of TM-LL-37-exo, which could significantly reduce ZIKV-induced testicular injury and sperm injury, and had broad-spectrum antiviral effect. Compared to free LL-37, exosome-loaded LL-37 showed a better serum stability, higher efficiency to cross the placental barrier, and stronger antiviral activity. The mechanism of exosome-loaded LL-37 against ZIKV infection was consistent with that of free LL-37, which could directly inactivate viral particles, reduce the susceptibility of host cells, and act on viral replication stage. Our study provides a novel strategy for the development of LL-37 against viral infection.


Subject(s)
Exosomes , Zika Virus Infection , Zika Virus , Male , Female , Humans , Pregnancy , Zika Virus Infection/drug therapy , Zika Virus/physiology , Exosomes/metabolism , Semen/metabolism , Placenta , Virus Replication , Antiviral Agents/therapeutic use
14.
Bioorg Med Chem ; 103: 117682, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38493729

ABSTRACT

Zika virus (ZIKV) disease has been given attention due to the risk of congenital microcephaly and neurodevelopmental disorders after ZIKV infection in pregnancy, but no vaccine or antiviral drug is available. Based on a previously reported ZIKV inhibitor ZK22, a series of novel 1-aryl-4-arylmethylpiperazine derivatives was designed, synthesized, and investigated for antiviral activity by quantify cellular ZIKV RNA amount using RT-qPCR method in ZIKV-infected human venous endothelial cells (HUVECs) assay. Structure-activity relationship (SAR) analysis demonstrated that anti-ZIKV activity of 1-aryl-4-arylmethylpiperazine derivatives is not correlated with molecular hydrophobicity, multiple new derivatives with pyridine group to replace the benzonitrile moiety of ZK22 showed stronger antiviral activity, higher ligand lipophilicity efficiency as well as lower cytotoxicity. Two active compounds 13 and 33 were further identified as novel ZIKV entry inhibitors with the potential of oral available. Moreover, both ZK22 and newly active derivatives also possess of obvious inhibition on the viral replication of coronavirus and influenza A virus at low micromolar level. In summary, this work provided better candidates of ZIKV inhibitor for preclinical study and revealed the promise of 1-aryl-4-arylmethylpiperazine chemotype in the development of broad-spectrum antiviral agents.


Subject(s)
Zika Virus Infection , Zika Virus , Female , Humans , Pregnancy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Endothelial Cells , Virus Replication , Zika Virus Infection/drug therapy , Piperazines/chemistry , Piperazines/pharmacology
15.
Brain Behav Immun ; 118: 318-333, 2024 May.
Article in English | MEDLINE | ID: mdl-38460804

ABSTRACT

Zika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor. This receptor is the primary purinergic receptor involved in neuroinflammation, neurodegeneration, and immunity. In this work, we investigated the role of ATP-P2X7 receptor signaling in Zika-related brain abnormalities. Wild-type mice (WT) and P2X7 receptor-deficient (P2X7-/-) C57BL/6 newborn mice were subcutaneously inoculated with 5 × 106plaque-forming units of ZIKV or mock solution. P2X7 receptor expression increased in the brain of Zika virus-infected mice compared to the mock group. Comparative analyses of the hippocampi from WT and P2X7-/-mice revealed that the P2X7 receptor increased hippocampal damage in CA1/CA2 and CA3 regions. Doublecortin expression decreased significantly in the brains of ZIKV-infected mice. WT ZIKV-infected mice showed impaired motor performance compared to P2X7-/- infected mice. WT ZIKV-infected animals showed increased expression of glial markers GFAP (astrocytes) and IBA-1 (microglia) compared to P2X7-/- infected mice. Although the P2X7 receptor contributes to neuronal loss and neuroinflammation, WT mice were more efficient in controlling the viral load in the brain than P2X7 receptor-deficient mice. This result was associated with higher induction of TNF-α, IFN-ß, and increased interferon-stimulated gene expression in WT mice than P2X7-/-ZIKV-infected. Finally, we found that the P2X7 receptor contributes to inhibiting the neuroprotective signaling pathway AKT/mTOR while stimulating the caspase-3 activation, possibly two distinct pathways contributing to neurodegeneration. These findings suggest that ATP-P2X7 receptor signaling contributes to the antiviral response in the brain of ZIKV-infected mice while increasing neuronal loss, neuroinflammation, and related brain abnormalities.


Subject(s)
Zika Virus Infection , Zika Virus , Pregnancy , Female , Animals , Mice , Zika Virus/genetics , Neuroinflammatory Diseases , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Mice, Inbred C57BL , Brain/metabolism , Signal Transduction , Adenosine Triphosphate
16.
Exp Neurol ; 374: 114699, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301864

ABSTRACT

The congenital Zika syndrome (CZS) has been characterized as a set of several brain changes, such as reduced brain volume and subcortical calcifications, in addition to cognitive deficits. Microcephaly is one of the possible complications found in newborns exposed to Zika virus (ZIKV) during pregnancy, although it is an impacting clinical sign. This study aimed to investigate the consequences of a model of congenital ZIKV infection by evaluating the histopathology, blood-brain barrier, and neuroinflammation in pup rats 24 h after birth, and neurodevelopment of the offspring. Pregnant rats were inoculated subcutaneously with ZIKV-BR at the dose 1 × 107 plaque-forming unit (PFU mL-1) of ZIKV isolated in Brazil (ZIKV-BR) on gestational day 18 (G18). A set of pups, 24 h after birth, was euthanized. The brain was collected and later evaluated for the histopathology of brain structures through histological analysis. Additionally, analyses of the blood-brain barrier were conducted using western blotting, and neuroinflammation was assessed using ELISA. Another set of animals was evaluated on postnatal days 3, 6, 9, and 12 for neurodevelopment by observing the developmental milestones. Our results revealed hippocampal atrophy in ZIKV animals, in addition to changes in the blood-brain barrier structure and pro-inflammatory cytokines expression increase. Regarding neurodevelopment, a delay in important reflexes during the neonatal period in ZIKV animals was observed. These findings advance the understanding of the pathophysiology of CZS and contribute to enhancing the rat model of CZS.


Subject(s)
Microcephaly , Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Pregnancy , Humans , Female , Rats , Animals , Zika Virus Infection/complications , Zika Virus Infection/diagnosis , Zika Virus/physiology , Pregnancy Complications, Infectious/pathology , Blood-Brain Barrier/pathology , Neuroinflammatory Diseases , Microcephaly/etiology , Microcephaly/pathology , Atrophy/pathology , Hippocampus/pathology
17.
Vaccines (Basel) ; 12(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38400198

ABSTRACT

Zika virus (ZIKV) is an emerging flavivirus that causes congenital syndromes including microcephaly and fetal demise in pregnant women. No commercial vaccines against ZIKV are currently available. We previously generated a chimeric ZIKV (ChinZIKV) based on the Chaoyang virus (CYV) by replacing the prME protein of CYV with that of a contemporary ZIKV strain GZ01. Herein, we evaluated this vaccine candidate in a mouse model and showed that ChinZIKV was totally safe in both adult and suckling immunodeficient mice. No viral RNA was detected in the serum of mice inoculated with ChinZIKV. All of the mice inoculated with ChinZIKV survived, while mice inoculated with ZIKV succumbed to infection in 8 days. A single dose of ChinZIKV partially protected mice against lethal ZIKV challenge. In contrast, all the control PBS-immunized mice succumbed to infection after ZIKV challenge. Our results warrant further development of ChinZIKV as a vaccine candidate in clinical trials.

18.
Dis Model Mech ; 17(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38415826

ABSTRACT

The Zika virus received significant attention in 2016, following a declaration by the World Health Organization of an epidemic in the Americas, in which infections were associated with microcephaly. Indeed, prenatal Zika virus infection is detrimental to fetal neural stem cells and can cause premature cell loss and neurodevelopmental abnormalities in newborn infants, collectively described as congenital Zika syndrome. Contrastingly, much less is known about how neonatal infection affects the development of the newborn nervous system. Here, we investigated the development of the dentate gyrus of wild-type mice following intracranial injection of the virus at birth (postnatal day 0). Through this approach, we found that Zika virus infection affected the development of neurogenic regions within the dentate gyrus and caused reactive gliosis, cell death and a decrease in cell proliferation. Such infection also altered volumetric features of the postnatal dentate gyrus. Thus, we found that Zika virus exposure to newborn mice is detrimental to the subgranular zone of the dentate gyrus. These observations offer insight into the cellular mechanisms that underlie the neurological features of congenital Zika syndrome in children.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Child , Infant , Female , Pregnancy , Animals , Mice , Zika Virus Infection/complications , Neurogenesis , Cell Death , Cell Proliferation
19.
J Inherit Metab Dis ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421058

ABSTRACT

The balance between a protective and a destructive immune response can be precarious, as exemplified by inborn errors in nucleotide metabolism. This class of inherited disorders, which mimics infection, can result in systemic injury and severe neurologic outcomes. The most common of these disorders is Aicardi Goutières syndrome (AGS). AGS results in a phenotype similar to "TORCH" infections (Toxoplasma gondii, Other [Zika virus (ZIKV), human immunodeficiency virus (HIV)], Rubella virus, human Cytomegalovirus [HCMV], and Herpesviruses), but with sustained inflammation and ongoing potential for complications. AGS was first described in the early 1980s as familial clusters of "TORCH" infections, with severe neurology impairment, microcephaly, and basal ganglia calcifications (Aicardi & Goutières, Ann Neurol, 1984;15:49-54) and was associated with chronic cerebrospinal fluid (CSF) lymphocytosis and elevated type I interferon levels (Goutières et al., Ann Neurol, 1998;44:900-907). Since its first description, the clinical spectrum of AGS has dramatically expanded from the initial cohorts of children with severe impairment to including individuals with average intelligence and mild spastic paraparesis. This broad spectrum of potential clinical manifestations can result in a delayed diagnosis, which families cite as a major stressor. Additionally, a timely diagnosis is increasingly critical with emerging therapies targeting the interferon signaling pathway. Despite the many gains in understanding about AGS, there are still many gaps in our understanding of the cell-type drivers of pathology and characterization of modifying variables that influence clinical outcomes and achievement of timely diagnosis.

20.
Ear Hear ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38363825

ABSTRACT

OBJECTIVES: Children with microcephaly exhibit neurodevelopmental delays and compromised communicative functioning, yielding challenges for clinical assessment and informed intervention. This study characterized auditory neural function and communication abilities in children with microcephaly due to congenital Zika syndrome (CZS). DESIGN: Click-evoked auditory brainstem responses (ABR) at fast and slow stimulation rates and natural speech-evoked cortical auditory evoked potentials (CAEP) were recorded in 25 Brazilian children with microcephaly related to CZS (M age: 5.93 ± 0.62 years) and a comparison group of 25 healthy children (M age: 5.59 ± 0.80 years) matched on age, sex, ethnicity, and socioeconomic status. Communication abilities in daily life were evaluated using caregiver reports on Vineland Adaptive Behavior Scales-3. RESULTS: Caregivers of children with microcephaly reported significantly lower than typical adaptive functioning in the communication and socialization domains. ABR wave I latency did not differ significantly between the groups, suggesting comparable peripheral auditory function. ABR wave V absolute latency and waves I-V interwave latency were significantly shorter in the microcephaly group for both ears and rates. CAEP analyses identified reduced N2 amplitudes in children with microcephaly as well as limited evidence of speech sound differentiation, evidenced mainly by the N2 response latency. Conversely, in the comparison group, speech sound differences were observed for both the P1 and N2 latencies. Exploratory analyses in the microcephaly group indicated that more adaptive communication was associated with greater speech sound differences in the P1 and N2 amplitudes. The trimester of virus exposure did not have an effect on the ABRs or CAEPs. CONCLUSIONS: Microcephaly related to CZS is associated with alterations in subcortical and cortical auditory neural function. Reduced ABR latencies differ from previous reports, possibly due to the older age of this cohort and careful assessment of peripheral auditory function. Cortical speech sound detection and differentiation are present but reduced in children with microcephaly. Associations between communication performance in daily life and CAEPs highlight the value of auditory evoked potentials in assessing clinical populations with significant neurodevelopmental disabilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...