Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 687
Filtrar
1.
Trop Med Infect Dis ; 9(3)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38535877

RESUMEN

Aedes aegypti and Culex quinquefasciatus mosquitoes are vectors of different arboviruses that cause a large burden of disease in humans worldwide. A key step towards reducing the impact of arboviruses on humans can be achieved through integrated mosquito surveillance and control approaches. We carried out an integrated approach of mosquito surveillance and control actions to reduce populations of these insects along with a viral surveillance in a neighborhood of Recife (Northeastern Brazil) with high mosquito densities and arbovirus transmission. The actions were carried out in 40 different houses in the Nova Descoberta neighborhood. The area was divided into two groups, the control group using tools to monitor the mosquito density (1 OVT; 1 Double BR-ovt; monthly capture of alates) and the experimental group with control actions using surveillance tools in an intensified way (2 OVTs; 2 Double BR-ovts; fortnightly capture of alates; toxic baits). We evaluated the study's impact on the mosquito density via the Egg Density (ED) and Adult Density (AD) over a period of 12 cycles of 28 days each. The collected adult mosquitoes were processed via RT-qPCR for DENV, CHIKV and ZIKV and, subsequently, the Minimum Infection Rate (MIR) was calculated. After 12 cycles, we observed a 91% and 99% reduction in Aedes ED and AD in the monitored properties, as well as a 76% reduction in the AD of Cx. quinquefasciatus in the same properties. Moreover, we detected circulating arboviruses (DENV and ZIKV) in 19.52% of captured adult mosquitoes. We show that enhancing entomological surveillance tools can aid in the early detection of possible risk areas based on vector mosquito population numbers. Additionally, the detection of important arboviruses such as ZIKV and DENV raises awareness and allows for a better selection of risk areas and silent virus spread. It offers supplementary information for guiding emergency mosquito control measures in the target area. The goal is to minimize human-vector interactions and, subsequently, to lower the risk of transmitting circulating arboviruses.

2.
bioRxiv ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38463973

RESUMEN

During major, recent yellow fever (YF) epidemics in Brazil, human cases were attributed only to spillover infections from sylvatic transmission with no evidence of human amplification. Furthermore, the historic absence of YF in Asia, despite abundant peridomestic Aedes aegypti and naive human populations, represents a longstanding enigma. We tested the hypothesis that immunity from dengue (DENV) and Zika (ZIKV) flaviviruses limits YF virus (YFV) viremia and transmission by Ae. aegypti . Prior DENV and ZIKV immunity consistently suppressed YFV viremia in experimentally infected macaques, leading to reductions in Ae. aegypti infection when mosquitoes were fed on infected animals. These results indicate that, in DENV- and ZIKV-endemic regions such as South America and Asia, flavivirus immunity suppresses YFV human amplification potential, reducing the risk of urban outbreaks. One-Sentence Summary: Immunity from dengue and Zika viruses suppresses yellow fever viremia, preventing infection of mosquitoes and reducing the risk of epidemics.

3.
Chaos ; 34(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38490187

RESUMEN

Viral infections spread by mosquitoes are a growing threat to human health and welfare. Zika virus (ZIKV) is one of them and has become a global worry, particularly for women who are pregnant. To study ZIKV dynamics in the presence of demographic stochasticity, we consider an established ZIKV transmission model that takes into consideration the disease transmission from human to mosquito, mosquito to human, and human to human. In this study, we look at the local stability of the disease-free and endemic equilibriums. By conducting the sensitivity analysis both locally and globally, we assess the effect of the model parameters on the model outcomes. In this work, we use the continuous-time Markov chain (CTMC) process to develop and analyze a stochastic model. The main distinction between deterministic and stochastic models is that, in the absence of any preventive measures such as avoiding travel to infected areas, being careful from mosquito bites, taking precautions to reduce the risk of sexual transmission, and seeking medical care for any acute illness with a rash or fever, the stochastic model shows the possibility of disease extinction in a finite amount of time, unlike the deterministic model shows disease persistence. We found that the numerically estimated disease extinction probability agrees well with the analytical probability obtained from the Galton-Watson branching process approximation. We have discovered that the disease extinction probability is high if the disease emerges from infected mosquitoes rather than infected humans. In the context of the stochastic model, we derive the implicit equation of the mean first passage time, which computes the average amount of time needed for a system to undergo its first state transition.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Embarazo , Animales , Humanos , Femenino , Infección por el Virus Zika/epidemiología , Probabilidad , Cadenas de Markov , Demografía
4.
Math Biosci Eng ; 21(1): 924-962, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303449

RESUMEN

In this work, we investigate the transmission dynamics of the Zika virus, considering both a compartmental model involving humans and mosquitoes and an extended model that introduces a non-human primate (monkey) as a second reservoir host. The novelty of our approach lies in the later generalization of the model using a fractional time derivative. The significance of this study is underscored by its contribution to understanding the complex dynamics of Zika virus transmission. Unlike previous studies, we incorporate a non-human primate reservoir host into the model, providing a more comprehensive representation of the disease spread. Our results reveal the importance of utilizing a nonstandard finite difference (NSFD) scheme to simulate the disease's dynamics accurately. This NSFD scheme ensures the positivity of the solution and captures the correct asymptotic behavior, addressing a crucial limitation of standard solvers like the Runge-Kutta Fehlberg method (ode45). The numerical simulations vividly demonstrate the advantages of our approach, particularly in terms of positivity preservation, offering a more reliable depiction of Zika virus transmission dynamics. From these findings, we draw the conclusion that considering a non-human primate reservoir host and employing an NSFD scheme significantly enhances the accuracy and reliability of modeling Zika virus transmission. Researchers and policymakers can use these insights to develop more effective strategies for disease control and prevention.


Asunto(s)
Culicidae , Infección por el Virus Zika , Virus Zika , Animales , Reproducibilidad de los Resultados , Primates
5.
Am J Trop Med Hyg ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377614

RESUMEN

Since the Zika virus (ZIKV) pandemic in 2015-2017, there has been a near absence of reported cases in the Americas outside of Brazil. However, the conditions for Aedes-borne transmission persist in Latin America, and the threat of ZIKV transmission is increasing as population immunity wanes. Mexico has reported only 70 cases of laboratory-confirmed ZIKV infection since 2020, with no cases recorded in the Yucatán peninsula. Here, we provide evidence of active ZIKV transmission, despite the absence of official case reports, in the city of Mérida, Mexico, the capital of the state of Yucatán. Capitalizing on an existing cohort, we detected cases in participants with symptoms consistent with flavivirus infection from 2021 to 2022. Serum samples from suspected cases were tested for ZIKV RNA by polymerase chain reaction or ZIKV-reactive IgM by ELISA. To provide more specific evidence of exposure, focus reduction neutralization tests were performed on ELISA-positive samples. Overall, we observed 25 suspected ZIKV infections for an estimated incidence of 2.8 symptomatic cases per 1,000 persons per year. Our findings emphasize the continuing threat of ZIKV transmission in the setting of decreased surveillance and reporting.

6.
Viruses ; 16(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38400018

RESUMEN

Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding capacity. ncRNAs frequently modulate gene expression through specific interactions with target proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their transmission between hematophagous insect vectors and mammalian hosts. During this process, a complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and therapeutic strategies against flavivirus-related diseases.


Asunto(s)
Flavivirus , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Flavivirus/genética , Virus Zika/genética , Virus Zika/metabolismo , Virulencia , Replicación Viral , Proteínas/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Antivirales/metabolismo , Mamíferos
7.
EMBO J ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378891

RESUMEN

Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.

8.
NPJ Vaccines ; 9(1): 32, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360793

RESUMEN

Zika virus (ZIKV) is a significant threat to pregnant women and their fetuses as it can cause severe birth defects and congenital neurodevelopmental disorders, referred to as congenital Zika syndrome (CZS). Thus, a safe and effective ZIKV vaccine for pregnant women to prevent in utero ZIKV infection is of utmost importance. Murine models of ZIKV infection are limited by the fact that immunocompetent mice are resistant to ZIKV infection. As such, interferon-deficient mice have been used in some preclinical studies to test the efficacy of ZIKV vaccine candidates against lethal virus challenge. However, interferon-deficient mouse models have limitations in assessing the immunogenicity of vaccines, necessitating the use of immunocompetent mouse pregnancy models. Using the human stat2 knock-in (hSTAT2KI) mouse pregnancy model, we show that vaccination with a purified formalin-inactivated Zika virus (ZPIV) vaccine prior to pregnancy successfully prevented vertical transmission. In addition, maternal immunity protected offspring against postnatal challenge for up to 28 days. Furthermore, passive transfer of human IgG purified from hyper-immune sera of ZPIV vaccinees prevented maternal and fetal ZIKV infection, providing strong evidence that the neutralizing antibody response may serve as a meaningful correlate of protection.

9.
PLoS Negl Trop Dis ; 18(1): e0011408, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38295108

RESUMEN

The distribution and intensity of viral diseases transmitted by Aedes aegypti mosquitoes, including dengue, have rapidly increased over the last century. Here, we study dengue virus (DENV) transmission across the ecologically and demographically distinct regions or Ecuador. We analyzed province-level age-stratified dengue incidence data from 2000-2019 using catalytic models to estimate the force of infection of DENV over eight decades. We found that provinces established endemic DENV transmission at different time periods. Coastal provinces with the largest and most connected cities had the earliest and highest increase in DENV transmission, starting around 1980 and continuing to the present. In contrast, remote and rural areas with reduced access, like the northern coast and the Amazon regions, experienced a rise in DENV transmission and endemicity only in the last 10 to 20 years. The newly introduced chikungunya and Zika viruses have age-specific distributions of hospital-seeking cases consistent with recent emergence across all provinces. To evaluate factors associated with geographic differences in DENV transmission potential, we modeled DENV vector risk using 11,693 Aedes aegypti presence points to the resolution of 1 hectare. In total, 56% of the population of Ecuador, including in provinces identified as having increasing DENV transmission in our models, live in areas with high risk of Aedes aegypti, with population size, trash collection, elevation, and access to water as important determinants. Our investigation serves as a case study of the changes driving the expansion of DENV and other arboviruses globally and suggest that control efforts should be expanded to semi-urban and rural areas and to historically isolated regions to counteract increasing dengue outbreaks.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Ecuador/epidemiología , Mosquitos Vectores , Factores de Riesgo
10.
Cells ; 13(2)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38247836

RESUMEN

Zika fever is a reemerging arthropod-borne viral disease; however, Zika virus (ZIKV) can be transmitted by other, non-vector means. Severe Zika fever is characterized by neurological disorders, autoimmunity, or congenital Zika syndrome. Monocytes are primary ZIKV targets in humans and, in response to infection, release extracellular vesicles like exosomes. Exosomes mediate intercellular communication and are involved in the virus's ability to circumvent the immune response, promoting pathological processes. This study aimed to evaluate the role of monocyte exosomes in cell-to-cell viral transmission. We isolated exosomes from ZIKV-infected monocytes (Mø exo ZIKV) by differential ultracentrifugation and identified them by nanoparticle tracking analysis; transmission electron microscopy; and CD63, CD81, TSG101, and Alix detection by cytofluorometry. Purified exosome isolates were obtained by uncoupling from paramagnetic beads or by treatment with UV radiation and RNase A. We found that Mø exo ZIKV carry viral RNA and E/NS1 proteins and that their interaction with naïve cells favors viral transmission, infection, and cell differentiation/activation. These data suggest that Mø exo ZIKV are an efficient alternative pathway for ZIKV infection. Knowledge of these mechanisms contributes to understanding the pathogenesis of severe disease and to the development of new vaccines and therapies.


Asunto(s)
Exosomas , Vesículas Extracelulares , Infección por el Virus Zika , Virus Zika , Humanos , Monocitos
11.
Arch Virol ; 169(2): 32, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243006

RESUMEN

Zika virus (ZIKV) infection in pregnant women is associated with birth defects, which are more prevalent and severe the earlier in pregnancy the infection occurs. Pregnant women at risk of possible ZIKV exposure (n = 154) were screened using ELISA for ZIKV IgM and IgG. Nine of 154 (5.84%) pregnant women who underwent screening exhibited positive ZIKV serology. Of these, two maternal infections were confirmed by real-time RT-PCR and five were considered probable, but only three of those were retained for further analysis based on strict diagnostic criteria. Plaque reduction neutralization tests (PRNT) confirmed ZIKV infection in nine cases (5.84%). Two cases of vertical ZIKV transmission were confirmed by PCR. One infant showed no signs of congenital ZIKV syndrome and had a normal developmental profile despite first-trimester maternal infection. In the second case, pregnancy was terminated. Production of interferon γ (IFN-γ) by peripheral blood mononuclear cells obtained from pregnant women and umbilical cord blood was measured using enzyme-linked immunospot assay (ELISpot) after stimulation with panels of synthetic peptides derived from the sequence of ZIKV proteins. This analysis revealed that, among all peptide pools tested, those derived from the ZIKV envelope protein generated the strongest IFN-γ response.


Asunto(s)
Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Lactante , Femenino , Humanos , Embarazo , Infección por el Virus Zika/diagnóstico , Virus Zika/genética , Leucocitos Mononucleares , Anticuerpos Antivirales , Péptidos , Inmunidad Celular , Complicaciones Infecciosas del Embarazo/diagnóstico
12.
Lancet Planet Health ; 8(1): e30-e40, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38199719

RESUMEN

BACKGROUND: Estimates of the spatiotemporal distribution of different mosquito vector species and the associated risk of transmission of arboviruses are key to design adequate policies for preventing local outbreaks and reducing the number of human infections in endemic areas. In this study, we quantified the abundance of Aedes albopictus and Aedes aegypti and the local transmission potential for three arboviral infections at an unprecedented spatiotemporal resolution in areas where no entomological surveillance is available. METHODS: We developed a computational model to quantify the daily abundance of Aedes mosquitoes, leveraging temperature and precipitation records. The model was calibrated on mosquito surveillance data collected in 115 locations in Europe and the Americas between 2007 and 2018. Model estimates were used to quantify the reproduction number of dengue virus, Zika virus, and chikungunya in Europe and the Americas, at a high spatial resolution. FINDINGS: In areas colonised by both Aedes species, A aegypti was estimated to be the main vector for the transmission of dengue virus, Zika virus, and chikungunya, being associated with a higher estimate of R0 when compared with A albopictus. Our estimates highlighted that these arboviruses were endemic in tropical and subtropical countries, with the highest risks of transmission found in central America, Venezuela, Colombia, and central-east Brazil. A non-negligible potential risk of transmission was also estimated for Florida, Texas, and Arizona (USA). The broader ecological niche of A albopictus could contribute to the emergence of chikungunya outbreaks and clusters of dengue autochthonous cases in temperate areas of the Americas, as well as in mediterranean Europe (in particular, in Italy, southern France, and Spain). INTERPRETATION: Our results provide a comprehensive overview of the transmission potential of arboviral diseases in Europe and the Americas, highlighting areas where surveillance and mosquito control capacities should be prioritised. FUNDING: EU and Ministero dell'Università e della Ricerca, Italy (Piano Nazionale di Ripresa e Resilienza Extended Partnership initiative on Emerging Infectious Diseases); EU (Horizon 2020); Ministero dell'Università e della Ricerca, Italy (Progetti di ricerca di Rilevante Interesse Nazionale programme); Brazilian National Council of Science, Technology and Innovation; Ministry of Health, Brazil; and Foundation of Research for Minas Gerais, Brazil.


Asunto(s)
Aedes , Arbovirus , Fiebre Chikungunya , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Fiebre Chikungunya/epidemiología , Europa (Continente)/epidemiología , Infección por el Virus Zika/epidemiología
13.
Int J Infect Dis ; 139: 92-100, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056689

RESUMEN

OBJECTIVES: Chikungunya virus (CHIKV), a reemerging global public health concern, which causes acute febrile illness, rash, and arthralgia and may affect both mothers and infants during pregnancy. Mother-to-child transmission (MTCT) of CHIKV in Africa remains understudied. METHODS: Our cohort study screened 1006 pregnant women with a Zika/dengue/CHIKV rapid test at two clinics in Nigeria between 2019 and 2022. Women who tested positive for the rapid test were followed through their pregnancy and their infants were observed for 6 months, with a subset tested by reverse transcription-polymerase chain reaction (RT-PCR) and neutralization, to investigate seropositivity rates and MTCT of CHIKV. RESULTS: Of the 1006, 119 tested positive for CHIKV immunoglobulin (Ig)M, of which 36 underwent detailed laboratory tests. While none of the IgM reactive samples were RT-PCR positive, 14 symptomatic pregnant women were confirmed by CHIKV neutralization test. Twelve babies were followed with eight normal and four abnormal outcomes, including stillbirth, cleft lip/palate with microcephaly, preterm delivery, polydactyly with sepsis, and jaundice. CHIKV IgM testing identified three possible antepartum transmissions. CONCLUSION: In Nigeria, we found significant CHIKV infection in pregnancy and possible CHIKV antepartum transmission associated with birth abnormalities.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Labio Leporino , Fisura del Paladar , Dengue , Infección por el Virus Zika , Virus Zika , Lactante , Recién Nacido , Humanos , Femenino , Embarazo , Virus Chikungunya/genética , Mujeres Embarazadas , Estudios de Cohortes , Nigeria/epidemiología , Labio Leporino/complicaciones , Transmisión Vertical de Enfermedad Infecciosa , Fisura del Paladar/complicaciones , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/complicaciones , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/epidemiología , Mortinato , Inmunoglobulina M
14.
PLoS One ; 18(12): e0295390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38060554

RESUMEN

Dengue, Zika and chikungunya are Aedes-borne viral diseases that have become great global health concerns in the past years. Several countries in Africa have reported outbreaks of these diseases and despite Ghana sharing borders with some of these countries, such outbreaks are yet to be detected. Viral RNA and antibodies against dengue serotype-2 have recently been reported among individuals in some localities in the regional capital of Ghana. This is an indication of a possible silent transmission ongoing in the population. This study, therefore, investigated the entomological transmission risk of dengue, Zika and chikungunya viruses in a forest and domestic population in the Greater Accra Region, Ghana. All stages of the Aedes mosquito (egg, larvae, pupae and adults) were collected around homes and in the forest area for estimation of risk indices. All eggs were hatched and reared to larvae or adults for morphological identification together with larvae and adults collected from the field. The forest population had higher species richness with 7 Aedes species. The predominant species of Aedes mosquitoes identified from both sites was Aedes aegypti (98%). Aedes albopictus, an important arbovirus vector, was identified only in the peri-domestic population at a prevalence of 1.5%, significantly higher than previously reported. All risk indices were above the WHO threshold except the House Index for the domestic site which was moderate (19.8). The forest population recorded higher Positive Ovitrap (34.2% vs 26.6%) and Container (67.9% vs 36.8%) Indices than the peri-domestic population. Although none of the mosquito pools showed the presence of dengue, chikungunya or Zika viruses, all entomological risk indicators showed that both sites had a high potential arboviral disease transmission risk should any of these viruses be introduced. Continuous surveillance is recommended in these and other sites in the Metropolis to properly map transmission risk areas to inform outbreak preparedness strategies.


Asunto(s)
Aedes , Infecciones por Arbovirus , Fiebre Chikungunya , Dengue , Infección por el Virus Zika , Virus Zika , Humanos , Adulto , Animales , Fiebre Chikungunya/epidemiología , Ghana/epidemiología , Mosquitos Vectores , Infecciones por Arbovirus/epidemiología , Infección por el Virus Zika/epidemiología , Bosques , Medición de Riesgo
15.
Infect Dis Poverty ; 12(1): 109, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037192

RESUMEN

BACKGROUND: Mosquito research in Europe has a long history, primarily focused on malaria vectors. In recent years, invasive mosquito species like the Asian tiger mosquito (Aedes albopictus) and the spread of arboviruses like dengue virus, chikungunya virus or bluetongue virus have led to an intensification of research and monitoring in Europe. The risk of further dissemination of exotic species and mosquito-borne pathogens is expected to increase with ongoing globalization, human mobility, transport geography, and climate warming. Researchers have conducted various studies to understand the ecology, biology, and effective control strategies of mosquitoes and associated pathogens. MAIN BODY: Three invasive mosquito species are established in Europe: Asian tiger mosquito (Aedes albopictus), Japanese bush mosquito (Ae. japonicus), and Korean bush mosquito (Aedes koreicus). Ae. albopictus is the most invasive species and has been established in Europe since 1990. Over the past two decades, there has been an increasing number of outbreaks of infections by mosquito-borne viruses in particular chikungunya virus, dengue virus or Zika virus in Europe primary driven by Ae. albopictus. At the same time, climate change with rising temperatures results in increasing threat of invasive mosquito-borne viruses, in particular Usutu virus and West Nile virus transmitted by native Culex mosquito species. Effective mosquito control programs require a high level of community participation, going along with comprehensive information campaigns, to ensure source reduction and successful control. Control strategies for container breeding mosquitoes like Ae. albopictus or Culex species involve community participation, door-to-door control activities in private areas. Further measures can involve integration of sterile insect techniques, applying indigenous copepods, Wolbachia sp. bacteria, or genetically modified mosquitoes, which is very unlike to be practiced as standard method in the near future. CONCLUSIONS: Climate change and globalization resulting in the increased establishment of invasive mosquitoes in particular of the Asian tiger mosquito Ae. albopictus in Europe within the last 30 years and increasing outbreaks of infections by mosquito-borne viruses warrants intensification of research and monitoring. Further, effective future mosquito control programs require increase in intense community and private participation, applying physical, chemical, biological, and genetical control activities.


Asunto(s)
Aedes , Arbovirus , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Especies Introducidas , Europa (Continente)/epidemiología , Mosquitos Vectores , Control de Mosquitos
16.
PLoS Negl Trop Dis ; 17(12): e0011863, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38150470

RESUMEN

BACKGROUND: The first chikungunya virus (CHIKV) outbreaks during the modern scientific era were identified in the Americas in 2013, reaching high attack rates in Caribbean countries. However, few cohort studies have been performed to characterize the initial dynamics of CHIKV transmission in the New World. METHODOLOGY/PRINCIPAL FINDINGS: To describe the dynamics of CHIKV transmission shortly after its introduction in Brazil, we performed semi-annual serosurveys in a long-term community-based cohort of 652 participants aged ≥5 years in Salvador, Brazil, between Feb-Apr/2014 and Nov/2016-Feb/2017. CHIKV infections were detected using an IgG ELISA. Cumulative seroprevalence and seroincidence were estimated and spatial aggregation of cases was investigated. The first CHIKV infections were identified between Feb-Apr/2015 and Aug-Nov/2015 (incidence: 10.7%) and continued to be detected at low incidence in subsequent surveys (1.7% from Aug-Nov/2015 to Mar-May/2016 and 1.2% from Mar-May/2016 to Nov/206-Feb/2017). The cumulative seroprevalence in the last survey reached 13.3%. It was higher among those aged 30-44 and 45-59 years (16.1% and 15.6%, respectively), compared to younger (12.4% and 11.7% in <15 and 15-29 years, respectively) or older (10.3% in ≥60 years) age groups, but the differences were not statistically significant. The cumulative seroprevalence was similar between men (14.7%) and women (12.5%). Yet, among those aged 15-29 years, men were more often infected than women (18.1% vs. 7.4%, respectively, P = 0.01), while for those aged 30-44, a non-significant opposite trend was observed (9.3% vs. 19.0%, respectively, P = 0.12). Three spatial clusters of cases were detected in the study site and an increased likelihood of CHIKV infection was detected among participants who resided with someone with CHIKV IgG antibodies. CONCLUSIONS/SIGNIFICANCE: Unlike observations in other settings, the initial spread of CHIKV in this large urban center was limited and focal in certain areas, leaving a high proportion of the population susceptible to further outbreaks. Additional investigations are needed to elucidate the factors driving CHIKV spread dynamics, including understanding differences with respect to dengue and Zika viruses, in order to guide prevention and control strategies for coping with future outbreaks.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Infección por el Virus Zika , Virus Zika , Masculino , Humanos , Femenino , Estudios de Cohortes , Brasil/epidemiología , Estudios Seroepidemiológicos , Anticuerpos Antivirales , Inmunoglobulina G
17.
Res Sq ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38106210

RESUMEN

Zika virus (ZIKV) infection continues to pose a significant public health concern due to limited available preventive measures and treatments. ZIKV is unique among flaviviruses in its vertical transmission capacity (i.e., transmission from mother to fetus) yet the underlying mechanisms remain incompletely understood. Here, we show that both African and Asian lineages of ZIKV induce tunneling nanotubes (TNTs) in placental trophoblasts and multiple other mammalian cell types. Amongst investigated flaviviruses, only ZIKV strains trigger TNTs. We show that ZIKV-induced TNTs facilitate transfer of viral particles, proteins, and RNA to neighboring uninfected cells. ZIKV TNT formation is driven exclusively via its non-structural protein 1 (NS1); specifically, the N-terminal region (50 aa) of membrane-bound NS1 is necessary and sufficient for triggering TNT formation in host cells. Using affinity purification-mass spectrometry of cells infected with wild-type NS1 or non-TNT forming NS1 (pNS1ΔTNT) proteins, we found mitochondrial proteins are dominant NS1-interacting partners, consistent with the elevated mitochondrial mass we observed in infected trophoblasts. We demonstrate that mitochondria are siphoned via TNTs from healthy to ZIKV-infected cells, both homotypically and heterotypically, and inhibition of mitochondrial respiration reduced viral replication in trophoblast cells. Finally, ZIKV strains lacking TNT capabilities due to mutant NS1 elicited a robust antiviral IFN-λ 1/2/3 response, indicating ZIKV's TNT-mediated trafficking also allows ZIKV cell-cell transmission that is camouflaged from host defenses. Together, our findings identify a new stealth mechanism that ZIKV employs for intercellular spread among placental trophoblasts, evasion of antiviral interferon response, and the hijacking of mitochondria to augment its propagation and survival. Discerning the mechanisms of ZIKV intercellular strategies offers a basis for novel therapeutic developments targeting these interactions to limit its dissemination.

18.
Parasit Vectors ; 16(1): 402, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932781

RESUMEN

BACKGROUND: Cell fusing agent virus (CFAV) was the first insect-specific virus to be characterized, and has been reported to negatively influence the growth of arboviruses such as dengue, Zika, and La Cross, making it a promising biocontrol agent for mosquito-borne disease prevention. Aedes aegypti Aag2 cells were naturally infected with CFAV. However, the ability of this virus to stably colonize an Ae. aegypti population via artificial infection and how it influences the vector competence of this mosquito have yet to be demonstrated. METHODS: CFAV used in this study was harvested from Aag2 cells and its complete genome sequence was obtained by polymerase chain reaction and rapid amplification of complementary DNA ends, followed by Sanger sequencing. Phylogenetic analysis of newly identified CFAV sequences and other sequences retrieved from GenBank was performed. CFAV stock was inoculated into Ae. aegypti by intrathoracic injection, the survival of parental mosquitoes was monitored and CFAV copies in the whole bodies, ovaries, and carcasses of the injected F0 generation and in the whole bodies of the F1 generation on different days were examined by reverse transcription-quantitative polymerase chain reaction. RESULTS: The virus harvested from Aag2 cells comprised a mixture of three CFAV strains. All genome sequences of CFAV derived from Aag2 cells clustered into one clade but were far from those isolated or identified from Ae. aegypti. Aag2-derived CFAV efficiently replicated in the mosquito body and did not attenuate the survival of Ae. aegypti. However, the viral load in the ovarian tissues was much lower than that in other tissues and the virus could not passage to the offspring by vertical transmission. CONCLUSIONS: The results of this study demonstrate that Aag2-derived CFAV was not vertically transmitted in Ae. aegypti and provide valuable information on the colonization of mosquitoes by this virus.


Asunto(s)
Aedes , Flavivirus , Virus de Insectos , Infección por el Virus Zika , Virus Zika , Animales , Línea Celular , Filogenia , Mosquitos Vectores
19.
China CDC Wkly ; 5(44): 984-990, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-38023389

RESUMEN

Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV) are highly pathogenic human arboviruses transmitted by the Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) or Ae. Albopictus mosquito. These arboviruses are responsible for causing fever, hemorrhagic conditions, and neurological diseases in humans post-bite from an infected Aedes mosquito. Over the past 80 years, the Ae. albopictus has infested every habitable continent, bar Antarctica, thereby escalating the probability of global insect-borne infectious disease outbreaks. This research follows the global transmission pattern of Ae. albopictus and provides a summary of disease prevention and control strategies for mosquito-borne infections, as implemented by the World Health Organization (WHO) and both Asian and European countries. Consequently, this study can aid in the prevention and control of mosquito-borne diseases while acting as a basis for international collaboration on effectively managing arbovirus infection issues in public health.

20.
BMC Infect Dis ; 23(1): 708, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864153

RESUMEN

BACKGROUND: Aedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we systematically review past approaches to map risk for different Aedes-borne arboviruses from local to global scales, identifying differences and similarities in the data types, covariates, and modelling approaches used. METHODS: We searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and yellow fever with no geographical or date restrictions. We included studies that needed to parameterise or fit their model to real-world epidemiological data and make predictions to new spatial locations of some measure of population-level risk of viral transmission (e.g. incidence, occurrence, suitability, etc.). RESULTS: We found a growing number of arbovirus risk mapping studies across all endemic regions and arboviral diseases, with a total of 176 papers published 2002-2022 with the largest increases shortly following major epidemics. Three dominant use cases emerged: (i) global maps to identify limits of transmission, estimate burden and assess impacts of future global change, (ii) regional models used to predict the spread of major epidemics between countries and (iii) national and sub-national models that use local datasets to better understand transmission dynamics to improve outbreak detection and response. Temperature and rainfall were the most popular choice of covariates (included in 50% and 40% of studies respectively) but variables such as human mobility are increasingly being included. Surprisingly, few studies (22%, 31/144) robustly tested combinations of covariates from different domains (e.g. climatic, sociodemographic, ecological, etc.) and only 49% of studies assessed predictive performance via out-of-sample validation procedures. CONCLUSIONS: Here we show that approaches to map risk for different arboviruses have diversified in response to changing use cases, epidemiology and data availability. We identify key differences in mapping approaches between different arboviral diseases, discuss future research needs and outline specific recommendations for future arbovirus mapping.


Asunto(s)
Aedes , Infecciones por Arbovirus , Arbovirus , Fiebre Chikungunya , Dengue , Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Infecciones por Arbovirus/epidemiología , Fiebre Amarilla/epidemiología , Mosquitos Vectores , Dengue/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...