Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.546
Filter
1.
J Neurol Sci ; 459: 122955, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38593523

ABSTRACT

Chikungunya fever is an arboviral illness caused by chikungunya virus (CHIKV) and transmitted by the bite of Aedes aegypti and Aedes albopictus. It is an RNA virus belonging to the genus Alphavirus and family Togaviridae. We present a case series of three patients with chikungunya illness developing para/post-infectious myeloradiculoneuropathy.These patients developed neurological symptoms in the form of bilateral lower limb weakness with sensory and bowel involvement after the recovery from the initial acute episode of chikungunya fever. Clinical examination findings suggested myeloradiculoneuropathy with normal Magnetic Resonance Imaging of the Spine, with the nerve conduction study showing sensorimotor axonal polyneuropathy. All the patients were treated with 1 g of methylprednisolone once a day for five days, and case 2 was given intravenous immunoglobulin also. In the follow-up, cases 1 and 2 showed complete recovery without recurrence, and case 3 did not show improvement at one month.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Animals , Humans , Chikungunya Fever/complications , Chikungunya Fever/diagnostic imaging , Chikungunya Fever/drug therapy , Insect Vectors , Chikungunya virus/genetics
2.
Front Physiol ; 15: 1381164, 2024.
Article in English | MEDLINE | ID: mdl-38606012

ABSTRACT

The mosquito Aedes aegypti is an important vector of diseases including dengue, Zika, chikungunya, and yellow fever. Olfaction is a critical modality for mosquitoes enabling them to locate hosts, sources of nectar, and sites for oviposition. GABA is an essential neurotransmitter in olfactory processing in the insect brain, including the primary olfactory center, the antennal lobe. Previous work with Ae. aegypti has suggested that antennal lobe inhibition via GABA may be involved in the processing of odors. However, little is known about GABA receptor expression in the mosquito brain, or how they may be involved in odor attraction. In this context, generating mutants that target the mosquito's olfactory responses, and particularly the GABAergic system, is essential to achieve a better understanding of these diverse processes and olfactory coding in these disease vectors. Here we demonstrate the potential of a transgenic line using the QF2 transcription factor, GABA-B1QF2-ECFP, as a new neurogenetic tool to investigate the neural basis of olfaction in Ae. aegypti. Our results show that the gene insertion has a moderate impact on mosquito fitness. Moreover, the line presented here was crossed with a QUAS reporter line expressing the green fluorescent protein and used to determine the location of the metabotropic GABA-B1 receptor expression. We find high receptor expression in the antennal lobes, especially the cell bodies surrounding the antennal lobes. In the mushroom bodies, receptor expression was high in the Kenyon cells, but had low expression in the mushroom body lobes. Behavioral experiments testing the fruit odor attractants showed that the mutants lost their behavioral attraction. Together, these results show that the GABA-B1QF2-ECFP line provides a new tool to characterize GABAergic systems in the mosquito nervous system.

3.
Nitric Oxide ; 147: 26-41, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38614230

ABSTRACT

Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.

4.
G3 (Bethesda) ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626295

ABSTRACT

The mosquito Aedes aegypti is the primary vector of many human arboviruses such as dengue, yellow fever, chikungunya and Zika, which affect millions of people world-wide. Population genetics studies on this mosquito have been important in understanding its invasion pathways and success as a vector of human disease. The Axiom aegypti1 SNP chip was developed from a sample of geographically diverse Ae. aegypti populations to facilitate genomic studies on this species. We evaluate the utility of the Axiom aegypti1 SNP chip for population genetics and compare it with a low-depth shot-gun sequencing approach using mosquitoes from the native (Africa) and invasive range (outside Africa). These analyses indicate that results from the SNP chip are highly reproducible and have a higher sensitivity to capture alternative alleles than a low-coverage whole-genome sequencing approach. Although the SNP chip suffers from ascertainment bias, results from population structure, ancestry, demographic and phylogenetic analyses using the SNP chip were congruent with those derived from low coverage whole genome sequencing, and consistent with previous reports on Africa and outside Africa populations using microsatellites. More importantly, we identified a subset of SNPs that can be reliably used to generate merged databases, opening the door to combined analyses. We conclude that the Axiom aegypti1 SNP chip is a convenient, more accurate, low-cost alternative to low-depth whole genome sequencing for population genetic studies of Ae. aegypti that do not rely on full allelic frequency spectra. Whole genome sequencing and SNP chip data can be easily merged, extending the usefulness of both approaches.

5.
Rev Soc Bras Med Trop ; 57: e00404, 2024.
Article in English | MEDLINE | ID: mdl-38597523

ABSTRACT

BACKGROUND: Chikungunya fever is an emerging global infection transmitted by Aedes mosquitoes that manifests as an acute febrile illness with joint pain and can lead to chronic arthritis. The mechanism underlying chronic joint damage remains unclear; however, chronic chikungunya arthritis shares similarities with rheumatoid arthritis. Disease-modifying antirheumatic drugs have revolutionized rheumatoid arthritis treatment by preventing joint damage. However, the role of these therapies in chronic chikungunya arthritis has not been determined. We conducted a systematic review to evaluate the burden of joint structural damage in chronic chikungunya arthritis to help to define the role of disease-modifying therapy in this disease. METHODS: This systematic review included retrospective and prospective studies, trials, and case reports evaluating joint damage caused by chikungunya virus. Various databases were searched without any date or language restrictions. Study selection was conducted independently by two researchers, and data were extracted from the articles selected. RESULTS: A total of 108 studies were initially evaluated, with 8 meeting the inclusion criteria. Longitudinal studies have reported persistent joint pain from chikungunya infection and the progression of radiographic joint damage up to 13 years post-infection. Joint imaging revealed synovial inflammation, bone erosion, and cartilage destruction in patients with chronic chikungunya arthritis. CONCLUSIONS: Few studies have addressed chikungunya-induced joint damage, limiting our understanding of chronic chikungunya arthritis. Nevertheless, chronic chikungunya arthritis has similarities to rheumatoid arthritis. The success of early disease-modifying antirheumatic drug therapy in rheumatoid arthritis underscores the need for comprehensive research on its role in chikungunya arthritis.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Chikungunya Fever , Chikungunya virus , Humans , Antirheumatic Agents/therapeutic use , Arthralgia/etiology , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Chikungunya Fever/complications , Prospective Studies , Retrospective Studies
6.
PLoS Pathog ; 20(4): e1011975, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38557892

ABSTRACT

Arboviruses can emerge rapidly and cause explosive epidemics of severe disease. Some of the most epidemiologically important arboviruses, including dengue virus (DENV), Zika virus (ZIKV), Chikungunya (CHIKV) and yellow fever virus (YFV), are transmitted by Aedes mosquitoes, most notably Aedes aegypti and Aedes albopictus. After a mosquito blood feeds on an infected host, virus enters the midgut and infects the midgut epithelium. The virus must then overcome a series of barriers before reaching the mosquito saliva and being transmitted to a new host. The virus must escape from the midgut (known as the midgut escape barrier; MEB), which is thought to be mediated by transient changes in the permeability of the midgut-surrounding basal lamina layer (BL) following blood feeding. Here, we present a mathematical model of the within-mosquito population dynamics of DENV (as a model system for mosquito-borne viruses more generally) that includes the interaction of the midgut and BL which can account for the MEB. Our results indicate a dose-dependency of midgut establishment of infection as well as rate of escape from the midgut: collectively, these suggest that the extrinsic incubation period (EIP)-the time taken for DENV virus to be transmissible after infection-is shortened when mosquitoes imbibe more virus. Additionally, our experimental data indicate that multiple blood feeding events, which more closely mimic mosquito-feeding behavior in the wild, can hasten the course of infections, and our model predicts that this effect is sensitive to the amount of virus imbibed. Our model indicates that mutations to the virus which impact its replication rate in the midgut could lead to even shorter EIPs when double-feeding occurs. Mechanistic models of within-vector viral infection dynamics provide a quantitative understanding of infection dynamics and could be used to evaluate novel interventions that target the mosquito stages of the infection.


Subject(s)
Aedes , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Animals , Gastrointestinal Tract , Mosquito Vectors
7.
PLoS Negl Trop Dis ; 18(4): e0012075, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574163

ABSTRACT

Chikungunya can have longstanding effects on health and quality of life. Alongside the recent approval of the world's first chikungunya vaccine by the US Food and Drug Administration in November 2023 and with new chikungunya vaccines in the pipeline, it is important to understand the perspectives of stakeholders before vaccine rollout. Our study aim is to identify key programmatic considerations and gaps in Evidence-to-Recommendation criteria for chikungunya vaccine introduction. We used purposive and snowball sampling to identify global, national, and subnational stakeholders from outbreak prone areas, including Latin America, Asia, and Africa. Semi-structured in-depth interviews were conducted and analysed using qualitative descriptive methods. We found that perspectives varied between tiers of stakeholders and geographies. Unknown disease burden, diagnostics, non-specific disease surveillance, undefined target populations for vaccination, and low disease prioritisation were critical challenges identified by stakeholders that need to be addressed to facilitate rolling out a chikungunya vaccine. Future investments should address these challenges to generate useful evidence for decision-making on new chikungunya vaccine introduction.


Subject(s)
Chikungunya Fever , Vaccines , Humans , Chikungunya Fever/epidemiology , Chikungunya Fever/prevention & control , Evidence Gaps , Quality of Life , Disease Outbreaks/prevention & control
8.
Article in English | MEDLINE | ID: mdl-38557925

ABSTRACT

Acute encephalitis syndrome (AES) outbreaks in children of Eastern Uttar Pradesh (E-UP) region of India have been a longstanding public health issue, with a significant case fatality rate of 20-25%. Since past decade, a rise in chikungunya (CHIK) cases has been occurring, which is a reported etiology of AES. However, the burden of chikungunya virus (CHIKV) among pediatric AES (pAES) is unknown from E-UP. We included 238 hospitalized pAES cases. The presence of IgM antibodies for CHIKV, and Dengue virus (DENV) was tested, and RT-PCR was performed for CHIKV and DENV in serologically confirmed CHIKV and DENV pAES cases. Positive samples were sequenced using Sangers sequencing. Further, to check for co-infection, IgM antibodies for other AES etiologies including Japanese encephalitis virus (JEV), Leptospira and Orientia tsutsugamushi (OT) in serum were also investigated. IgM ELISA demonstrated 5.04% (12) positivity for CHIKV. Among CHIKV IgM positive, 3 (25%, 3/12) pAES patients died. CHIKV genome was detected in 3 pAES specimens. Among which, 2 CHIKV cases were also positive for OT DNA. Partially sequenced CHIKV were genotyped as ECSA. The overall finding indicates evidence of CHIKV infection with high case fatality among pAES patients from E-UP. This study advocates constant serological and molecular surveillance of CHIKV in AES endemic regions of India.

9.
bioRxiv ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38562906

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC 50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a k inact /K I of 6.4 × 10 3 M -1 s -1 . LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the discovery and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for future development toward a CHIKV or pan-alphavirus therapeutic. Significance Statement: Chikungunya virus is one of the most prominent and widespread alphaviruses and has caused explosive outbreaks of arthritic disease. Currently, there are no FDA-approved drugs to treat disease caused by chikungunya virus or any other alphavirus-caused infection. Here, we report the discovery of a covalent small molecule inhibitor of chikungunya virus nsP2 protease activity and viral replication of four diverse alphaviruses. This finding highlights the utility of covalent fragment screening for inhibitor discovery and represents a starting point towards the development of alphavirus therapeutics targeting nsP2 protease.

10.
Article in English | MEDLINE | ID: mdl-38564109

ABSTRACT

INTRODUCTION: Reunion Island is a French overseas department in the South West Indian Ocean with a unique multi-ethnic population. Cardiovascular diseases are the most common chronic conditions with higher prevalences of hypertension and diabetes compared to mainland France. Moreover, Reunion Island is particularly exposed to vector-borne diseases such as chikungunya and dengue. Our objective is to describe the prevalence of cardiometabolic and infectious diseases in Reunion Island and explore causal mechanisms linking these diseases. METHODS: The REUNION study is an ongoing French prospective study. From January 2022, 2,000 consenting participants (18-68 years old) are being recruited from the general population according to polling lists and random generation of cellphone number. Baseline examination consists of (i) general health examination, assessment of cardiovascular risk factors, markers of subclinical atherosclerosis, bronchial obstruction, neuropathic and autonomic dysfunction, (ii) questionnaires to determine sociodemographic characteristics, diet, exposure to vector-borne diseases, mental health and cognitive functions, social inequalities in health and ethnic origins, (iii) biological sampling for determination of cardiovascular risk factors, seroprevalence of infectious diseases, innovative lipid biomarkers, advanced omics, composition of intestinal, periodontal and skin microbiota, and biobanking. CONCLUSIONS: The REUNION study should provide new insights into the prevalence of cardiometabolic and infectious diseases, as well as their potential associations through the examination of various environmental pathways and a wide range of health aspects.

11.
Nat Rev Immunol ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570719

ABSTRACT

The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.

12.
Article in English | MEDLINE | ID: mdl-38573394

ABSTRACT

PURPOSE: Over the past decade, the Amazon basin has faced numerous infectious epidemics. Our comprehension of the actual extent of these infections during pregnancy remains limited. This study aimed to clarify the clinical and epidemiological features of emerging and re-emerging infectious diseases during pregnancy in western French Guiana and along the Maroni River over the previous nine years. METHODS: This retrospective cohort study enrolled pregnant women living in west French Guiana territory and giving birth in the only local referral center after 22 weeks of gestation between 2013 and 2021. Data on symptomatic or asymptomatic biologically confirmed emerging or re-emerging diseases during pregnancy was collected. RESULTS: Six epidemic waves were experienced during the study period, including 498 confirmed Zika virus infections (2016), 363 SARS-CoV-2 infections (2020-2021), 87 chikungunya virus infections (2014), 76 syphilis infections (2013-2021), and 60 dengue virus infections (2013-2021) at different gestational ages. Furthermore, 1.1% (n = 287) and 1.4% (n = 350) of pregnant women in west French Guiana were living with HIV and HTLV, respectively. During the study period, at least 5.5% (n = 1,371) faced an emerging or re-emerging infection during pregnancy. CONCLUSION: These results highlight the diversity, abundance, and dynamism of emerging and re-emerging infectious agents faced by pregnant women in the Amazon basin. Considering the maternal and neonatal adverse outcomes associated with these infections, increased efforts are required to enhance diagnosis, reporting, and treatment of these conditions.

13.
PLoS Negl Trop Dis ; 18(4): e0012053, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38557981

ABSTRACT

BACKGROUND: Mosquito-borne arboviruses are expanding their territory and elevating their infection prevalence due to the rapid climate change, urbanization, and increased international travel and global trade. Various significant arboviruses, including the dengue virus, Zika virus, Chikungunya virus, and yellow fever virus, are all reliant on the same primary vector, Aedes aegypti. Consequently, the occurrence of arbovirus coinfection in mosquitoes is anticipated. Arbovirus coinfection in mosquitoes has two patterns: simultaneous and sequential. Numerous studies have demonstrated that simultaneous coinfection of arboviruses in mosquitoes is unlikely to exert mutual developmental influence on these viruses. However, the viruses' interplay within a mosquito after the sequential coinfection seems intricated and not well understood. METHODOLOGY/PRINCIPAL FINDINGS: We conducted experiments aimed at examining the phenomenon of arbovirus sequential coinfection in both mosquito cell line (C6/36) and A. aegypti, specifically focusing on dengue virus (DENV, serotype 2) and Zika virus (ZIKV). We firstly observed that DENV and ZIKV can sequentially infect mosquito C6/36 cell line, but the replication level of the subsequently infected ZIKV was significantly suppressed. Similarly, A. aegypti mosquitoes can be sequentially coinfected by these two arboviruses, regardless of the order of virus exposure. However, the replication, dissemination, and the transmission potential of the secondary virus were significantly inhibited. We preliminarily explored the underlying mechanisms, revealing that arbovirus-infected mosquitoes exhibited activated innate immunity, disrupted lipid metabolism, and enhanced RNAi pathway, leading to reduced susceptibility to the secondary arbovirus infections. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that, in contrast to simultaneous arbovirus coinfection in mosquitoes that can promote the transmission and co-circulation of these viruses, sequential coinfection appears to have limited influence on arbovirus transmission dynamics. However, it is important to note that more experimental investigations are needed to refine and expand upon this conclusion.


Subject(s)
Aedes , Arboviruses , Coinfection , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Animals , Coinfection/epidemiology , Mosquito Vectors , Dengue/epidemiology
14.
Biomed Microdevices ; 26(2): 21, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558326

ABSTRACT

Kirigami is one of the interesting paper art forms and the modified sub-class of origami. Kirigami paper art is widely employed in a variety of applications, and it is currently being used in biosensors because of its outstanding advantages. This is the first study on the use of a Kirigami-based aptasensor for DENV (Dengue virus)-antigen detection. In this study, the kirigami approach has been utilized to develop a stretchable, movable, and flexible sensor. The constructed stretchable-kirigami electrode helps in adjusting the connection of electrodes without disturbing the electrochemical cell zone during the experiment. To increase the sensitivity of this biosensor we have synthesized Ag-NPs (Silver nanoparticles) via chemical methods and characterized their results with the help of TEM & UV-Vis Spectroscopy. Different electrochemical approaches were used to validate the sensor response i.e., CV (Cyclic voltammetry) and LSV (Linear sweep voltammetry), which exhibited great detection capability towards dengue virus with the range of 0.1 µg/ml to 1000 µg/ml along with a detection limit of 0.1 µg/ml and showing no reactivity to the chikungunya virus antigen, making it more specific to the DENV antigen. Serum (healthy-human) was also successfully applied to validate the results of the constructed aptasensor. Integration of the Kirigami approach form with the electrochemical aptasensor that utilizes a 3-E setup (three-electrode setup) which is referred to as a tripod and collectively called Kirigami-tripod-based aptasensor. Thus, the developed integrated platform improves the sensors capabilities in terms of cost efficiency, high stretchability, and sensitivity.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Dengue , Metal Nanoparticles , Humans , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Gold/chemistry , Silver/chemistry , Biosensing Techniques/methods , Electrodes , Dengue/diagnosis , Limit of Detection
15.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38559089

ABSTRACT

Aedes aegypti is the main vector species of yellow fever, dengue, zika and chikungunya. The species is originally from Africa but has experienced a spectacular expansion in its geographic range to a large swath of the world, the demographic effects of which have remained largely understudied. In this report, we examine whole-genome sequences from 6 countries in Africa, North America, and South America to investigate the demographic history of the spread of Ae. aegypti into the Americas its impact on genomic diversity. In the Americas, we observe patterns of strong population structure consistent with relatively low (but probably non-zero) levels of gene flow but occasional long-range dispersal and/or recolonization events. We also find evidence that the colonization of the Americas has resulted in introduction bottlenecks. However, while each sampling location shows evidence of a past population contraction and subsequent recovery, our results suggest that the bottlenecks in America have led to a reduction in genetic diversity of only ~35% relative to African populations, and the American samples have retained high levels of genetic diversity (expected heterozygosity of ~0.02 at synonymous sites) and have experienced only a minor reduction in the efficacy of selection. These results evoke the image of an invasive species that has expanded its range with remarkable genetic resilience in the face of strong eradication pressure.

16.
Article in English | MEDLINE | ID: mdl-38594795

ABSTRACT

Abstract: Timor-Leste is a mountainous, half-island nation with a population of 1.3 million, which shares a land border with Indonesia and is 550 km from Darwin, Australia. Since independence in 2002, Timor-Leste has achieved significant development; however, high levels of poverty remain. Chikungunya virus (CHIKV) is endemic in over 100 countries in Africa, Asia, Europe and in the Americas. It is transmitted by the bite of infected Aedes aegypti or Ae. albopictus mosquitoes, which are present in Timor-Leste and which contribute to annual rainy-season dengue virus (DENV) outbreaks. Symptomatic people typically suffer from acute onset of fever, usually accompanied by severe arthritis or arthralgia. Joint pain can be debilitating for several days, and may sometimes last for weeks, months or years. Unlike DENV infection which has significant mortality, most people recover completely. Between 2002 and 2023, there were 26 cases of CHIKV notified in Australia who acquired their infection in Timor-Leste; however, laboratory testing capability for CHIKV in Timor-Leste only became available in 2021 using polymerase chain reaction (PCR). The first locally diagnosed case was notified in November 2023. In January 2024, an outbreak of CHIKV was recognised in Timor-Leste for the first time, with 195 outbreak cases reported during 1-31 January 2024; all were PCR positive. There were no cases hospitalised, and no deaths. The median age of cases was 17 years (range 1-76 years); 51% were males. Cases were reported across the country; most (88/195) were from Dili, although the highest incidence was seen in the neighbouring municipality of Ermera (monthly incidence rate of 58.8 cases per 100,000 population). This first reported outbreak of CHIKV in Timor-Leste highlights the need for improved mosquito-borne illness control and response strategies, including minimising breeding sites and promoting early presentation for treatment and differential diagnosis from DENV, and consideration of the deployment of Wolbachia-infected mosquitoes, particularly as they have shown to reduce the transmission of CHIKV, DENV and Zika virus, all of which pose threats in Timor-Leste.


Subject(s)
Chikungunya Fever , Chikungunya virus , Zika Virus Infection , Zika Virus , Male , Animals , Humans , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Female , Chikungunya Fever/epidemiology , Timor-Leste/epidemiology , Australia/epidemiology , Chikungunya virus/genetics , Disease Outbreaks , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control
17.
IJID Reg ; 11: 100360, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38596820

ABSTRACT

Objectives: Our study targets the potential of the local urban mosquito Aedes aegypti to experimentally transmit chikungunya virus (CHIKV), dengue virus (DENV), yellow fever virus (YFV), and Zika virus (ZIKV). Methods: We collected eggs and adults of Ae. aegypti in Medellín, Colombia (from February to March 2020) for mosquito experimental infections with DENV, CHIKV, YFV and ZIKV and viral detection using the BioMark Dynamic arrays system. Results: We show that Ae. aegypti from Medellín was more prone to become infected, to disseminate and transmit CHIKV and ZIKV than DENV and YFV. Conclusions: Thus, in Colombia, chikungunya is the most serious threat to public health based on our vector competence data.

18.
BMC Genomics ; 25(1): 336, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570743

ABSTRACT

The Asian tiger mosquito, Aedes albopictus, is a global invasive species, notorious for its role in transmitting dangerous human arboviruses such as dengue and Chikungunya. Although hematophagous behavior is repulsive, it is an effective strategy for mosquitoes like Aedes albopictus to transmit viruses, posing a significant risk to human health. However, the fragmented nature of the Ae. albopictus genome assembly has been a significant challenge, hindering in-depth biological and genetic studies of this mosquito. In this research, we have harnessed a variety of technologies and implemented a novel strategy to create a significantly improved genome assembly for Ae. albopictus, designated as AealbF3. This assembly boasts a completeness rate of up to 98.1%, and the duplication rate has been minimized to 1.2%. Furthermore, the fragmented contigs or scaffolds of AealbF3 have been organized into three distinct chromosomes, an arrangement corroborated through syntenic plot analysis, which compared the genetic structure of Ae. albopictus with that of Ae. aegypti. Additionally, the study has revealed a phylogenetic relationship suggesting that the PGANT3 gene is implicated in the hematophagous behavior of Ae. albopictus. This involvement was preliminarily substantiated through RNA interference (RNAi) techniques and behavioral experiment. In summary, the AealbF3 genome assembly will facilitate new biological insights and intervention strategies for combating this formidable vector of disease. The innovative assembly process employed in this study could also serve as a valuable template for the assembly of genomes in other insects characterized by high levels of heterozygosity.


Subject(s)
Aedes , Mosquito Vectors , Animals , Humans , Mosquito Vectors/genetics , Phylogeny , Feeding Behavior
19.
PNAS Nexus ; 3(4): pgae119, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560529

ABSTRACT

The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya, eastern- (EEEV), and Venezuelan- (VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology.

20.
Reumatol. clín. (Barc.) ; 20(4): 223-225, Abr. 2024. ilus, tab
Article in English | IBECS | ID: ibc-232376

ABSTRACT

Paraguay is currently facing a new outbreak of Chikungunya virus. This report summarizes two severe cases of Chikungunya (CHIKV) infection, confirmed by real-time reverse transcription polymerase chain reaction. We present the cases of patients with acute CHIKV infection and multisystem involvement, with fever, rash, abdominal pain, vomiting, myocarditis, and coronary artery anomalies, very similar to the cases described in MIS-C related to SARS-CoV-2 during the COVID-19 Pandemic. Both patients received IVIG and methylprednisolone, with good clinical response. In this setting of cytokine storm in Chikungunya, can we call it “Multisystem inflammatory syndrome associated with Chikungunya”?.(AU)


Paraguay se enfrenta actualmente a un nuevo brote del virus Chikungunya. Este informe resume dos casos graves de infección por Chikungunya (CHIKV), confirmados mediante reacción en cadena de la polimerasa con transcripción inversa en tiempo real. Presentamos los casos de pacientes con infección aguda por CHIKV y afectación multisistémica, con fiebre, erupción cutánea, dolor abdominal, vómitos, miocarditis y anomalías de las arterias coronarias, muy similares a los casos descritos en síndrome inflamatorio multisistémico relacionado con el SARS-CoV-2 durante la pandemia de COVID-19. Ambos pacientes recibieron IGIV y metilprednisolona, con buena respuesta clínica. En este escenario de tormenta de citoquinas en Chikungunya, ¿podemos llamarla «síndrome inflamatorio multisistémico asociado a Chikungunya»?.(AU)


Subject(s)
Humans , Male , Female , Infant, Newborn , Child , Cytokines , Chikungunya Fever , Chikungunya virus , /epidemiology , Paraguay , Inpatients , Physical Examination
SELECTION OF CITATIONS
SEARCH DETAIL
...