Your browser doesn't support javascript.

VHL Regional Portal

Information and Knowledge for Health

Home > Search > ()
Print Export

Export format:


Add more contacts
| |

Generation of a Chronic Obstructive Pulmonary Disease Model in Mice by Repeated Ozone Exposure.

J Vis Exp; (126)2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28872147
Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation and lung parenchymal destruction. It has a very high incidence in aging populations. The current conventional therapies for COPD focus mainly on symptom-modifying drugs; thus, the development of new therapies is urgently needed. Qualified animal models of COPD could help to characterize the underlying mechanisms and can be used for new drug screening. Current COPD models, such as lipopolysaccharide (LPS) or the porcine pancreatic elastase (PPE)-induced emphysema model, generate COPD-like lesions in the lungs and airways but do not otherwise resemble the pathogenesis of human COPD. A cigarette smoke (CS)-induced model remains one of the most popular because it not only simulates COPD-like lesions in the respiratory system, but it is also based on one of the main hazardous materials that causes COPD in humans. However, the time-consuming and labor-intensive aspects of the CS-induced model dramatically limit its application in new drug screening. In this study, we successfully generated a new COPD model by exposing mice to high levels of ozone. This model demonstrated the following: 1) decreased forced expiratory volume 25, 50, and 75/forced vital capacity (FEV25/FVC, FEV50/FVC, and FEV75/FVC), indicating the deterioration of lung function; 2) enlarged lung alveoli, with lung parenchymal destruction; 3) reduced fatigue time and distance; and 4) increased inflammation. Taken together, these data demonstrate that the ozone exposure (OE) model is a reliable animal model that is similar to humans because ozone overexposure is one of the etiological factors of COPD. Additionally, it only took 6 - 8 weeks, based on our previous work, to create an OE model, whereas it requires 3 - 12 months to induce the cigarette smoke model, indicating that the OE model might be a good choice for COPD research.