Your browser doesn't support javascript.

VHL Regional Portal

Information and Knowledge for Health

Home > Search > ()
Print Export

Export format:


Add more contacts
| |

Radon-induced lung cancer deaths may be overestimated due to failure to account for confounding by exposure to diesel engine exhaust in BEIR VI miner studies.

PLoS One; 12(9): e0184298, 2017.
Article in English | MEDLINE | ID: mdl-28886109


EPA reported that radon is the second leading cause of lung cancer in the United States, killing 21,100 people per year. EPA relies on the BEIR VI models, based on an evaluation of radon exposure and lung cancer risk in studies of miners. But these models did not account for co-exposure to diesel exhaust, a known human carcinogen recently classified by IARC. It is probable then that a portion of the lung cancer deaths in the miner cohorts are originally attributable to the exposure to diesel rather than radon.


To re-evaluate EPA's radon attributable lung cancer estimates accounting for diesel exposure information in the miner cohorts.


We used estimates of historical diesel concentrations, combined with diesel exposure-response functions, to estimate the risks of lung cancer attributable to diesel engine exhaust (DEE) exposure in the miner studies. We re-calculated the fatal lung cancer risk attributable to radon after accounting for risk from diesel and re-estimated the number of U.S. deaths associated with radon in the U.S. using EPA's methodology.


Considering the probable confounding with DEE exposure and using the same estimate of baseline mortality from 1989-91 that the EPA currently uses in their calculations, we estimate that radon-induced lung cancer deaths per year are 15,600 (95% CI: 14,300, 17,000)- 19,300 (95% CI: 18,800, 20,000) in the U.S. population, a reduction of 9%-26%. The death estimates would be 12,900-15,900 using 2014 baseline vital statistics.


We recommend further research on re-evaluating the health effects of exposure to radon that accounts for new information on diesel exhaust carcinogenicity in BEIR VI models, up-to-date vital statistics and new epidemiological evidence from residential studies.