Your browser doesn't support javascript.

Portal Regional de la BVS

Información y Conocimiento para la Salud

Home > Búsqueda > ()
Imprimir Exportar

Formato de exportación:



Adicionar mas contactos

Enviar resultado
| |

Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: self-quenching by photoactive energy traps.

Methods Appl Fluoresc; 5(1): 014010, 2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28276341


The effect of dye concentration on the fluorescence,Φ , and singlet molecular oxygen,Φ , quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nm thick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen ( O ) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, Φ = 0.05 ± 0.01 and Φ = 0.76 ± 0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05 M and concentration self-quenching after 0.01 M are interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius r  = 1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio Φ /Φ ≈ 0.35. Fluorescent traps are capable of yielding triplet states and O . Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided.