Your browser doesn't support javascript.

Portal Regional de la BVS

Información y Conocimiento para la Salud

Home > Búsqueda > ()
XML
Imprimir Exportar

Formato de exportación:

Exportar

Email
Adicionar mas contactos
| |

Bayesian meta-analysis: The role of the between-sample heterogeneity.

Stat Methods Med Res; 27(12): 3643-3657, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28511616
The random effect approach for meta-analysis was motivated by a lack of consistent assessment of homogeneity of treatment effect before pooling. The random effect model assumes that the distribution of the treatment effect is fully heterogenous across the experiments. However, other models arising by grouping some of the experiments are plausible. We illustrate on simulated binary experiments that the fully heterogenous model gives a poor meta-inference when fully heterogeneity is not the true model and that the knowledge of the true cluster model considerably improves the inference. We propose the use of a Bayesian model selection procedure for estimating the true cluster model, and Bayesian model averaging to incorporate into the meta-analysis the clustering estimation. A well-known meta-analysis for six major multicentre trials to assess the efficacy of a given dose of aspirin in post-myocardial infarction patients is reanalysed.