Your browser doesn't support javascript.

Portal Regional da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

Perspectives on the integration of a supercritical fluid extraction plant to a sugarcane biorefinery: thermo-economical evaluation of CO2 recycle systems

Food Sci. Technol (SBCTA, Impr.); 38(1): 13-18, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS-Express | ID: biblio-892236
Abstract In the present study, the software Aspen Plus® was used to analyse two different systems for CO2 recycle in a SFE process for extraction of more polar compounds using ethanol as co-solvent, the most common co-solvent used due to its environment-friendly nature. The extraction process of β-ecdysone from Brazilian ginseng roots was considered as example in the computational simulations. The first CO2 recycle system, named Recycle A, considered the compression of the CO2 separated in the second flash to the recycle pressure assumed at the first flash tank, its cooling to 25 °C and recirculation, while the second recycle system, named Recycle B, considered the cooling and pumping of the CO2 separated in the second flash, its heating to 25 °C and recirculation. The best techno-economic condition to operate the recycling step would be using Recycle A at 40 bar and 30 °C considering a stand-alone SFE process; and using Recycle B at 40 bar and 40 °C, considering this process in close proximity of a hypothetical sugarcane biorefinery. Therefore, these results suggest that the selection where would be located the SFE plant should be taken into account during the first steps of the process design.
Biblioteca responsável: BR25.1