Your browser doesn't support javascript.

Portal Regional da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

VKORC1-dependent pharmacokinetics of intravenous and oral phylloquinone (vitamin K1) mixed micelles formulation.

Eur J Clin Pharmacol; 69(3): 467-75, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22864379

OBJECTIVE:

The pharmacokinetics of phylloquinone (vitamin K1) were evaluated in healthy human adult volunteers (15 male and 15 female) following oral and intravenous administration of a mixed micelles formulation (Konakion MM 2 mg) in an open label study design. The subjects were allocated to one of three genotype-specific groups (n = 10 in each group) in terms of VKORC1 promoter polymorphism c.-1639 G > A to explore the relationship between genotype and pharmacokinetic parameters.

METHODS:

Blood samples were collected for up to 24 h after administration. Phylloquinone serum levels were determined by reversed phase HPLC with fluorometric detection after post-column zinc reduction. Pharmacokinetic evaluation was performed using non-compartmental analysis.

RESULTS:

Pharmacokinetic analysis of serum phylloquinone concentration versus time profiles revealed significant differences in the main pharmacokinetic parameters between groups. Upon oral administration, VKORC1 AG carriers showed 41 % higher mean bioavailability (p = 0.01) compared with homozygous AA individuals. Furthermore, AG subjects exhibited 30 % (p = 0.042) and 36 % (p = 0.021) higher mean AUC compared with GG and AA respectively. Terminal half-life was 32 % and 27 % longer for AG carriers in comparison to GG (p = 0.004) and AA (p = 0.015) genotypes respectively.

CONCLUSION:

Pharmacokinetic differences indicated significant inter-individual variance of vitamin K fate in the human body. The influence of the VKORC1 promoter polymorphism c.-1639 G > A on the pharmacokinetic properties of phylloquinone could be demonstrated in humans. To gain deeper insight in other potential genetic determinants of systemic vitamin K exposure, further correlation of the phenotype-genotype relationship of different players in vitamin K turnover has to be gained.