Your browser doesn't support javascript.

Portal Regional da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Series of dinuclear and tetranuclear lanthanide clusters encapsulated by salen-type and ß-diketionate ligands: single-molecule magnet and fluorescence properties.

Dalton Trans; 42(37): 13397-403, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23887476
Three dinuclear [Ln2H2OL(1)2(acac)2]·solvent (1, Ln = Gd, solvent = 2CH2Cl2; 2, Ln = Tb, no solvent; 3, Ln = Er, solvent = (C2H5)2O), and two tetranuclear lanthanide clusters [Ln4(µ3-OH)2L(2)2(acac)6]·2(solvent) (4, Ln = Tb, solvent = CH3OH; 5, Ln = Dy, solvent = CH3CN) were characterized in terms of structure, fluorescence and magnetism. The dinuclear lanthanide complexes were constructed by a rigid salen-type ligand H2L(1) = N,N'-bis(salicylidene)-o-phenylenediamine and ß-diketonate (acac = acetylacetonate) ligands, while the tetranuclear clusters were formed from the flexible ligand H2L(2) = N,N'-bis(salicylidene)-1,2-ethanediamine. Crystal structure analysis indicates that the rigid ligand favors the double-decker sandwich structure (Ln2L(1)2), in which the two lanthanide ions have different coordination numbers and geometry, while the more flexible ligand (H2L(2)) leads to planar tetranuclear clusters. The relationship between their respective magnetic anisotropy and ligand-field geometries and their fluorescence properties was investigated. The Dy and Tb-containing clusters exhibit typical visible fluorescence properties, and single-molecule magnet behavior is seen in complex 5.