Your browser doesn't support javascript.

Portal Regional da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Targeting Dynamin 2 as a Novel Pathway to Inhibit Cardiomyocyte Apoptosis Following Oxidative Stress.

Cell Physiol Biochem; 39(6): 2121-2134, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27802433


Inhibition of Drp-1-mediated mitochondrial fission limits reactive oxygen species (ROS) production and apoptosis in cardiomyocytes subjected to ischemia/reperfusion injury. It remains unknown if Dynamin 2 inhibition results in similar protective effects. Here we studied the role of Dynamin 2 in cardiomyocyte oxidative stress-induced apoptosis and ROS production.


The effect of lentiviral shRNA (lv5-shRNA) mediated Dynamin 2 knockdown on apopotosis, mitochondria, and ROS production were studied in neonatal mouse cardiomycytes, which were further treated with either selective Drp1 inhibitor mdivi-1 or the Dynamin 2/Drp1 inhibitor Dynasore. Apoptosis was evaluated by flow cytometry. Mitochondrial morphology and transmembrane potential (ΔΨm) were studied by confocal microscopy, and ROS production was detected by dichlorofluorescein diacetate.


Inhibition of Drp1 and Dynamin 2 protected against mitochondrial fragmentation, maintained ΔΨm, attenuated cellular ROS production and limited apoptosis. Moreover, Lv5-shRNA mediated knockdown of Dynamin 2 alleviated mitochondrial fragmentation, and reduced both ROS production and oxidative stress-induced apoptosis. The protective effects of Dynamin 2 knockdown were enhanced by Dynasore, indicating an added benefit.


Oxidative stress-induced apoptosis and ROS production are attenuated by not only Drp1 inhibition but also Dynamin 2 inhibition, implicating Dynamin 2 as a mediator of oxidative stress in cardiomyocytes.