Your browser doesn't support javascript.

Portal Regional da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
XML
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

Statistical Power in Plant Pathology Research.

Phytopathology; 108(1): 15-22, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28876210
In null hypothesis testing, failure to reject a null hypothesis may have two potential interpretations. One interpretation is that the treatments being evaluated do not have a significant effect, and a correct conclusion was reached in the analysis. Alternatively, a treatment effect may have existed but the conclusion of the study was that there was none. This is termed a Type II error, which is most likely to occur when studies lack sufficient statistical power to detect a treatment effect. In basic terms, the power of a study is the ability to identify a true effect through a statistical test. The power of a statistical test is 1 - (the probability of Type II errors), and depends on the size of treatment effect (termed the effect size), variance, sample size, and significance criterion (the probability of a Type I error, α). Low statistical power is prevalent in scientific literature in general, including plant pathology. However, power is rarely reported, creating uncertainty in the interpretation of nonsignificant results and potentially underestimating small, yet biologically significant relationships. The appropriate level of power for a study depends on the impact of Type I versus Type II errors and no single level of power is acceptable for all purposes. Nonetheless, by convention 0.8 is often considered an acceptable threshold and studies with power less than 0.5 generally should not be conducted if the results are to be conclusive. The emphasis on power analysis should be in the planning stages of an experiment. Commonly employed strategies to increase power include increasing sample sizes, selecting a less stringent threshold probability for Type I errors, increasing the hypothesized or detectable effect size, including as few treatment groups as possible, reducing measurement variability, and including relevant covariates in analyses. Power analysis will lead to more efficient use of resources and more precisely structured hypotheses, and may even indicate some studies should not be undertaken. However, the conclusions of adequately powered studies are less prone to erroneous conclusions and inflated estimates of treatment effectiveness, especially when effect sizes are small.