Your browser doesn't support javascript.

Portal Regional da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
XML
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

Biodegradable thermal imaging-tracked ultralong nanowire-reinforced conductive nanocomposites elastomers with intrinsical efficient antibacterial and anticancer activity for enhanced biomedical application potential.

Biomaterials; 201: 68-76, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30798021
Biodegradable elastomers with good biocompatibility have attracted much attention in biomedical diagnosis/therapy/regenerative medicine, as bioresorbable electronics and implanted devices. The bacterial infection, tissue toxicity, serious inflammatory response and tumorigenesis for implanted devices are still the important obstacles for their biomedical applications. Herein, we reported biodegradable ultralong copper sulfide nanowire-reinforced poly(citrates-siloxane) (PCS-CSNW) nanocomposites elastomers with inherent multifunctional properties for potential biomedical applications. The structure-homogeneous nanocomposites were formed through the hydrophobic-hydrophobic interaction between the oleylamine capped CSNW and polymer chain. PCS-CSNW showed controlled elastomeric mechanical behavior, tunable electronic conductivity and broad-spectrum antibacterial activity against gram-positive/gram-negative bacterium in vitro/in vivo. PCS-CSNW also exhibited tailored photoluminescent property and strong near-infrared (NIR) photothermal capacity which enabled the high-resolution in vivo thermal imaging and biodegradation tracking. Additionally, PCS-CSNW also demonstrated good cell biocompatibility and decreased inflammatory reaction in vivo. The cancer cells on PCS-CSNW nanocomposites were efficiently killed through a selective NIR-induced photothermal therapy. This work may provide a new strategy to design next-regeneration smart implanted devices for biomedical applications in bioresorbable electronics, tissue engineering and regenerative medicine.