Your browser doesn't support javascript.

Portal Regional da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
XML
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

3D printing in experimental orthopaedic surgery: do it yourself.

Artigo em Inglês | MEDLINE | ID: mdl-30864016

INTRODUCTION:

Periprosthetic infection is considered an increasing incidence pathology whose therapeutic strategies can be defined as unsatisfactory. Currently, animal models are employed to study its physiopathology and strategic therapies, but non-species-specific materials are implanted as foreign bodies. The use of these implants implies intrinsic instability, which hinders the development of a biofilm on their surfaces and complicates the post-operative recovery of the animal. The objective of the present study is the design of a species-specific implant for the New Zealand white (NZW) rabbit by means of 3D printing.

MATERIALS AND METHODS:

A CT scan of the knee of a NZW rabbit was performed, and the tibial surface was reconstructed in order to fabricate a species-specific tibial plateau using Horos and Autodesk Meshmixer™ software. This implant was inserted in fifteen NZW rabbits, and the assessment of its stability was based on the position of the limb at rest and the animal weight-bearing capacity. Biofilm formation on the surface was demonstrated by crystal violet staining.

RESULTS:

A 1.81 cm × 1 cm × 1.24 cm stainless steel implant was designed. It consisted of a 4-mm-thick tibial plate with a rough surface and an eccentric metaphyseal anchoring. All of the animals exhibited hyperflexion of the operated limb immediately post-operative, and 100% could apply full weight bearing from day 5 after surgery.

CONCLUSIONS:

The species-specific design of implants in experimental surgery encourages rapid recovery of the animal and the development of a biofilm on their surfaces, making them ideal for the study of the physiopathology and for establishing possible therapeutic targets for prosthetic infection.