Your browser doesn't support javascript.

Portal Regional da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Understanding the gut-kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition.

Acta Diabetol; 56(5): 581-592, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30888537


Type 2 diabetes mellitus (T2DM) has a rising prevalence and gut microbiota involvement is increasingly recognized. Diabetic nephropathy (DN) is a major complication of T2DM. The aim of the study was to understand the gut-kidney axis by an analysis of gut microbiota composition among biopsy-proven DN, T2DM without kidney disease, and healthy control.


Fecal samples were collected from 14 DNs, 14 age/gender-matched T2DMs without renal diseases (DM), 14 age and gender-matched healthy controls (HC) and household contacts (HH) of DM group. The microbiota composition was analyzed by 16sRNA microbial profiling approach.


Substantial differences were found in the richness of gut microbiota and the variation of bacteria population in DM compared to HC, and DN compared to DM, respectively. DM could be accurately distinguished from age/gender-matched healthy controls by the variable of genus g_Prevotella_9 (AUC = 0.9), and DN patients could be accurately distinguished from age/gender-matched DM by the variables of two genera (g_Escherichia-Shigella and g_Prevotella_9, AUC = 0.86). The microbiota composition of HH group was close to that of HC group, and was different from DM group. Under the same diet, DM could be more accurately detected by the same genus (g_Prevotella_9, AUC = 0.92).


Gut microbiota composition was explored to be related to the occurrence of biopsy-proven DN from DM. DM could be distinguished from HC by detecting g_Prevotella_9 level in feces, while DN was different from DM by the variables of g_Escherichia-Shigella and g_Prevotella_9, which potentially contributed to the physiopathological diagnosis of DN from DM.