Your browser doesn't support javascript.

Portal Regional da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
XML
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

Combined Administration of Poly-ADP-Ribose Polymerase-1 and Caspase-3 Inhibitors Alleviates Neuronal Apoptosis After Spinal Cord Injury in Rats.

World Neurosurg; 127: e346-e352, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30904799

BACKGROUND:

Neuronal apoptosis plays a pivotal role in spinal cord injury (SCI)-induced secondary cellular events. Caspase-dependent and -independent pathways are involved in neuronal apoptosis. Caspase-3 is the final effector of caspase-dependent apoptosis, whereas poly-ADP-ribose polymerase-1 (PARP-1) and apoptosis-inducing factor (AIF) are key executors of caspase-independent apoptosis. However, it remains unclear whether simultaneous inhibition of the 2 apoptosis pathways will be more beneficial for neuronal survival. Therefore, this study investigated the ability of coadministration of the PARP-1 inhibitor 3-aminobenzamide (3-AB) and caspase-3 inhibitor z-DEVD-fmk to attenuate apoptosis in a rat SCI model.

METHODS:

The rats were subjected to moderate contusive SCI. Locomotor function was measured using the Basso, Beattie, and Bresnahan rating scales; neuronal apoptosis was detected using transferase-mediated deoxyuridine triphosphate-biotin nick end labeling; and immunohistochemistry and Western blotting were used to measure protein expression.

RESULTS:

We found the locomotor function of rats was weakened within 7 days post-SCI. At day 7 post-SCI, neuronal apoptosis dramatically increased and the expression of PARP-1, AIF, and cleaved caspase-3 was significantly upregulated. Further, Bcl-2 expression was significantly downregulated. The highest locomotor function recovery was recorded after the combined administration of 3-AB and z-DEVD-fmk for 7 days post-SCI when compared with 3-AB or z-DEVD-fmk administered alone. In addition, this combination therapy significantly reduced neuronal apoptosis by preventing upregulation of PARP-1 and AIF, inhibiting caspase-3 activation, and elevating Bcl-2 expression.

CONCLUSIONS:

These results suggest that combination therapy is beneficial for neuronal function recovery in rats with SCI. The underlying mechanism may be associated with cosuppression of caspase-dependent and caspase-independent apoptosis pathways.