Your browser doesn't support javascript.

Portal Regional da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
XML
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats.

Cardiovasc Diabetol; 18(1): 45, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30935417

BACKGROUND:

Sodium glucose co-transporter 2 inhibitor (SGLT2i), a new class of anti-diabetic drugs acting on inhibiting glucose resorption by kidneys, is shown beneficial in reduction of heart failure hospitalization and cardiovascular mortality. The mechanisms remain unclear. We hypothesized that SGLT2i, empagliflozin can improve cardiac hemodynamics in non-diabetic hypertensive heart failure.

METHODS AND RESULTS:

The hypertensive heart failure model had been created by feeding spontaneous hypertensive rats (SHR) with high fat diet for 32 weeks (total n = 13). Half SHRs were randomized to be administered with SGLT2i, empagliflozin at 20 mg/kg/day for 12 weeks. After evaluation of electrocardiography and echocardiography, invasive hemodynamic study was performed and followed by blood sample collection and tissue analyses. Empagliflozin exhibited cardiac (improved atrial and ventricular remodeling) and renal protection, while plasma glucose level was not affected. Empagliflozin normalized both end-systolic and end-diastolic volume in SHR, in parallel with parameters in echocardiographic evaluation. Empagliflozin also normalized systolic dysfunction, in terms of the reduced maximal velocity of pressure incline and the slope of end-systolic pressure volume relationship in SHR. In histological analysis, empagliflozin significantly attenuated cardiac fibrosis in both atrial and ventricular tissues. The upregulation of atrial and ventricular expression of PPARα, ACADM, natriuretic peptides (NPPA and NPPB), and TNF-α in SHR, was all restored by treatment of empagliflozin.

CONCLUSIONS:

Empagliflozin improves hemodynamics in our hypertensive heart failure rat model, associated with renal protection, attenuated cardiac fibrosis, and normalization of HF genes. Our results contribute some understanding of the pleiotropic effects of empagliflozin on improving heart function.