Your browser doesn't support javascript.

Portal Regional da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
XML
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

Delivery of Antisense Oligonucleotide LOR-2501 Using Transferrin-conjugated Polyethylenimine-based Lipid Nanoparticle.

Anticancer Res; 39(4): 1785-1793, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30952718

BACKGROUND/AIM:

Efficient delivery of antisense oligonucleotide (ASO) by nanoparticle vectors is critical for its clinical application. The aim of this study was to design and evaluate a novel ASO vector TPSH-LP consisting of a reduction-sensitive cationic polymer PEI-SS-HA (PSH), lipids and transferrin (Tf) as a targeting ligand.

MATERIALS AND METHODS:

PSH was synthesized based on PEI 25 kDa. Nanoparticles containing PSH and Tf (TPSH-LP) were prepared and used to deliver an ASO LOR-2501 targeting ribonucleotide reductase R1. The physical and chemical properties of TPSH-LP and cellular uptake in HepG2 cells were studied.

RESULTS:

TPSH-LP formed a complex with LOR-2501 (L-TPSH-LP) which showed suitable particle size (267.77±16.20 nm) and zeta potential (4.87±0.52 mV). TPSH-LP showed lower cytotoxicity and higher transfection efficiency than PEI 25 kDa in HepG2 cells. The addition of Tf enhanced the targeting and delivery efficiency of PSH-LP. TPSH-LP transported LOR-2501 and down-regulated the levels of R1 protein efficiently by 64.15%.

CONCLUSION:

Data demonstrated the potential utility of TPSH-LP for oligonucleotide delivery in cancer therapy.