Your browser doesn't support javascript.

Portal Regional da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
XML
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

Electronic Effects Determine the Selectivity of Planar Au-Cu Bimetallic Thin Films for Electrochemical CO Reduction.

ACS Appl Mater Interfaces; 11(18): 16546-16555, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30969748
Au-Cu bimetallic thin films with controlled composition were fabricated by magnetron sputtering co-deposition, and their performance for the electrocatalytic reduction of CO was investigated. The uniform planar morphology served as a platform to evaluate the electronic effect isolated from morphological effects while minimizing geometric contributions. The catalytic selectivity and activity of Au-Cu alloys was found to be correlated with the variation of electronic structure that was varied with tunable composition. Notably, the d-band center gradually shifted away from the Fermi level with increasing Au atomic ratio, leading to a weakened binding energy of *CO, which is consistent with low CO coverage observed in CO stripping experiments. The decrease in the *CO binding strength results in the enhanced catalytic activity for CO formation with the increase in Au content. In addition, it was observed that copper oxide/hydroxide species are less stable on Au-Cu surfaces compared to those on the pure Cu surface, where the surface oxophilicity could be critical to tuning the binding strength of *OCHO. These results imply that the altered electronic structure could explain the decreased formation of HCOO on the Au-Cu alloys. In general, the formation of CO and HCOO as main CO reduction products on planar Au-Cu alloys followed the shift of the d-band center, which indicates that the electronic effect is the major governing factor for the electrocatalytic activity of CO reduction on Au-Cu bimetallic thin films.