Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.137
Filtrar
1.
Glob Chang Biol ; 30(4): e17282, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619685

RESUMEN

Given the current environmental crisis, biodiversity protection is one of the most urgent socio-environmental priorities. However, the effectiveness of protected areas (PAs), the primary strategy for safeguarding ecosystems, is challenged by global climate change (GCC), with evidence showing that species are shifting their distributions into new areas, causing novel species assemblages. Therefore, there is a need to evaluate PAs' present and future effectiveness for biodiversity under the GCC. Here, we analyzed changes in the spatiotemporal patterns of taxonomic and phylogenetic diversity (PD) of plants associated with the Neotropical seasonally dry forest (NSDF) under GCC scenarios. We modeled the climatic niche of over 1000 plant species in five representative families (in terms of abundance, dominance, and endemism) of the NSDF. We predicted their potential distributions in the present and future years (2040, 2060, and 2080) based on an intermediate scenario of shared socio-economic pathways (SSP 3.70), allowing species to disperse to new sites or constrained to the current distribution. Then, we tested if the current PAs network represents the taxonomic and phylogenetic diversities. Our results suggest that GCC could promote novel species assemblages with local responses (communities' modifications) across the biome. In general, models predicted losses in the taxonomic and phylogenetic diversities of all the five plant families analyzed across the distribution of the NSDF. However, in the northern floristic groups (i.e., Antilles and Mesoamerica) of the NSDF, taxonomic and PD will be stable in GCC projections. In contrast, across the NSDF in South America, some cores will lose diversity while others will gain diversity under GCC scenarios. PAs in some NSDF regions appeared insufficient to protect the NSDF diversity. Thus, there is an urgent need to assess how the PA system could be better reconfigured to warrant the protection of the NSDF.


Dada la actual crisis ambiental, la protección de la biodiversidad se presenta como una de las prioridades socio ambientales más urgentes. Sin embargo, la efectividad de las áreas protegidas (AP), la estrategia principal para salvaguardar los ecosistemas, se ve desafiada por el cambio climático global (CCG), con evidencia que muestra que las especies están desplazando sus distribuciones hacia nuevas áreas, provocando conjuntos de especies novedosos. Por lo tanto, es necesario evaluar la efectividad actual y futura de las AP para la biodiversidad bajo el CCG. En este contexto, analizamos cambios en los patrones espacio­temporales de diversidad taxonómica y filogenética de plantas asociadas al bosque estacionalmente seco neotropical (BES) bajo escenarios de CCG. Modelamos el nicho climático de más de 1,000 especies de plantas en cinco familias representativas (en términos de abundancia, dominancia y endemismo) del BES. Pronosticamos sus distribuciones potenciales en los años actuales y futuros (2040, 2060 y 2080) basándonos en un escenario intermedio de trayectorias socioeconómicas compartidas (SSP 3.70), permitiendo que las especies se dispersen a nuevos sitios o estén limitadas a la distribución actual. Luego, evaluamos si la red actual de AP representa las diversidades taxonómicas y filogenéticas. Nuestros resultados sugieren que el CCG podría promover conjuntos de especies novedosos con respuestas locales (modificaciones en las comunidades) en todo el bioma. En general, los modelos pronosticaron pérdidas en las diversidades taxonómicas y filogenéticas de las cinco familias de plantas analizadas en la distribución del BES. Sin embargo, en los grupos florísticos del norte (es decir, Antillas y Mesoamérica) del BSDN, la diversidad taxonómica y filogenética se mantendrá estable en las proyecciones de CCG. En cambio, en toda la región del BES en América del Sur, algunos núcleos perderán diversidad mientras que otros ganarán diversidad bajo escenarios de CCG. Algunas AP en regiones del BES parecen ser insuficientes para proteger la diversidad del bioma. Por lo tanto, es urgente evaluar cómo se podría reconfigurar mejor el sistema de AP para garantizar la protección del BES.


Asunto(s)
Ecosistema , Bosques , Filogenia , Biodiversidad , Cambio Climático
2.
Conserv Biol ; : e14268, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622950

RESUMEN

Overgeneralization and a lack of baseline data for microorganisms in high-latitude environments have restricted the understanding of the microbial response to climate change, which is needed to establish Antarctic conservation frameworks. To bridge this gap, we examined over 17,000 sequence variants of bacteria and microeukarya across the hyperarid Vestfold Hills and Windmill Islands regions of eastern Antarctica. Using an extended gradient forest model, we quantified multispecies response to variations along 79 edaphic gradients to explore the effects of change and wind-driven dispersal on community dynamics under projected warming trends. We also analyzed a second set of soil community data from the Windmill Islands to test our predictions of major environmental tipping points. Soil moisture was the most robust predictor for shaping the regional soil microbiome; the highest rates of compositional turnover occurred at 10-12% soil moisture threshold for photoautotrophs, such as Cyanobacteria, Chlorophyta, and Ochrophyta. Dust profiles revealed a high dispersal propensity for Chlamydomonas, a microalga, and higher biomass was detected at trafficked research stations. This could signal the potential for algal blooms and increased nonendemic species dispersal as human activities increase in the region. Predicted increases in moisture availability on the Windmill Islands were accompanied by high photoautotroph abundances. Abundances of rare oligotrophic taxa, such as Eremiobacterota and Candidatus Dormibacterota, which play a crucial role in atmospheric chemosynthesis, declined over time. That photosynthetic taxa increased as soil moisture increased under a warming scenario suggests the potential for competition between primary production strategies and thus a more biotically driven ecosystem should the climate become milder. Better understanding of environmental triggers will aid conservation efforts, and it is crucial that long-term monitoring of our study sites be established for the protection of Antarctic desert ecosystems. Furthermore, the successful implementation of an improved gradient forest model presents an exciting opportunity to broaden its use on microbial systems globally.


Efectos del incremento de la humedad del suelo sobre los ecosistemas microbianos del desierto antártico Resumen La sobre generalización y la falta de datos de línea base de los microorganismos en los ambientes de latitudes elevadas han limitado el conocimiento de la respuesta microbiana al cambio climático, la cual es necesaria para establecer marcos de conservación en la Antártida. Para cerrar esta brecha analizamos más de 17,000 variantes de secuencias de bacterias y micro eucariontes de las regiones híper­áridas de las Colinas Vestfold y las Islas Windmill en el este de la Antártida. Usamos un modelo de gradiente de bosque extendido para cuantificar la respuesta de múltiples especies a la variación de 79 gradientes edáficos y así explorar los efectos del cambio y la dispersión eólica sobre las dinámicas comunitarias bajo las tendencias proyectadas de calentamiento. También analizamos un segundo conjunto de datos de la comunidad del suelo de las Islas Windmill para probar nuestras predicciones de los principales puntos de inflexión ambiental. La humedad del suelo fue el pronóstico más sólido para la composición del microbioma del suelo regional; las tasas más altas de rotación composicional ocurrieron con el 10­12% de humedad del suelo para los fotoautótrofos, como Cyanobacteria, Chlorophyta, y Ochrophyta. Los perfiles de polvo revelaron una alta tendencia de dispersión para Chlamydomonas, una microalga, y detectamos una biomasa más alta en las estaciones de investigación con tráfico. Esto podría significar un potencial para el brote de algas y un incremento en la dispersión de especies no endémicas conforme las actividades humanas incrementan en la región. El incremento pronosticado de la humedad disponible en las Islas Windmill estuvo acompañado de una abundancia elevada de fotoautótrofos. Hubo una declinación con el tiempo en la abundancia de taxones raros, como Eremiobacterota y Ca. Dormibacterota, las cuales tienen un papel importante en la síntesis química de la atmósfera. Que exista un incremento de taxones fotosintéticos junto con el incremento de la humedad del suelo bajo un escenario de calentamiento sugiere un potencial de competencia entre las estrategias primarias de producción, y por lo tanto un ecosistema con más factores bióticos, si es que el clima se vuelve más templado. Un mejor entendimiento de los detonadores ambientales ayudará a los esfuerzos de conservación, además que es importante que se establezca el monitoreo a largo plazo de nuestros sitios de estudio para la protección de los ecosistemas del desierto de la Antártida. Más aún, la implementación exitosa de un modelo de gradiente de bosque mejorado representa una oportunidad emocionante para ampliar su uso en los sistemas microbianos de mundo.

3.
Glob Chang Biol ; 30(4): e17280, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613249

RESUMEN

Coastal wetlands play an important role in regulating atmospheric carbon dioxide (CO2) concentrations and contribute significantly to climate change mitigation. However, climate change, reclamation, and restoration have been causing substantial changes in coastal wetland areas and carbon exchange in China during recent decades. Here we compiled a carbon flux database consisting of 15 coastal wetland sites to assess the magnitude, patterns, and drivers of carbon fluxes and to compare fluxes among contrasting natural, disturbed, and restored wetlands. The natural coastal wetlands have the average net ecosystem exchange of CO2 (NEE) of -577 g C m-2 year-1, with -821 g C m-2 year-1 for mangrove forests and -430 g C m-2 year-1 for salt marshes. There are pronounced latitudinal patterns for carbon dioxide exchange of natural coastal wetlands: NEE increased whereas gross primary production (GPP) and respiration of ecosystem decreased with increasing latitude. Distinct environmental factors drive annual variations of GPP between mangroves and salt marshes; temperature was the dominant controlling factor in salt marshes, while temperature, precipitation, and solar radiation were co-dominant in mangroves. Meanwhile, both anthropogenic reclamation and restoration had substantial effects on coastal wetland carbon fluxes, and the effect of the anthropogenic perturbation in mangroves was more extensive than that in salt marshes. Furthermore, from 1980 to 2020, anthropogenic reclamation of China's coastal wetlands caused a carbon loss of ~3720 Gg C, while the mangrove restoration project during the period of 2021-2025 may switch restored coastal wetlands from a carbon source to carbon sink with a net carbon gain of 73 Gg C. The comparison of carbon fluxes among these coastal wetlands can improve our understanding of how anthropogenic perturbation can affect the potentials of coastal blue carbon in China, which has implications for informing conservation and restoration strategies and efforts of coastal wetlands.


Asunto(s)
Ecosistema , Humedales , Dióxido de Carbono , Ciclo del Carbono , China
4.
Environ Monit Assess ; 196(5): 451, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613723

RESUMEN

As the general population's diet has shifted to reflect current weight-loss trends, there has been an increase in zero-calorie artificial sweetener usage. Sucralose (C12H19Cl3O8), commonly known as Splenda® in the USA, is a primary example of these sweeteners. In recent years, sucralose has been identified as an environmental contaminant that cannot easily be broken down via bacterial decomposition. This study focuses on the impact of sucralose presence on microbial communities in brackish and freshwater systems. Microbial respiration and fluorescence were measured as indicators of microbial activity in sucralose-dosed samples taken from both freshwater and estuarine marsh environments. Results showed a significant difference between microbial concentration and respiration when dosed with varying levels of sucralose. Diatom respiration implied a negative correlation of community abundance with sucralose concentration. The freshwater cyanobacterial respiration increased in the presence of sucralose, implying a positive correlation of community abundance with sucralose concentration. This was in direct contrast to its brackish water counterpart. However, further investigation is necessary to confirm any potential utility of these communities in the breakdown of sucralose in the marsh environment.


Asunto(s)
Monitoreo del Ambiente , Sacarosa/análogos & derivados , Humedales , Humanos , Edulcorantes/toxicidad , Agua Dulce , Suelo
5.
BMC Plant Biol ; 24(1): 278, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609866

RESUMEN

BACKGROUND: The availability of soil phosphorus (P) often limits the productivities of wet tropical lowland forests. Little is known, however, about the metabolomic profile of different chemical P compounds with potentially different uses and about the cycling of P and their variability across space under different tree species in highly diverse tropical rainforests. RESULTS: We hypothesised that the different strategies of the competing tree species to retranslocate, mineralise, mobilise, and take up P from the soil would promote distinct soil 31P profiles. We tested this hypothesis by performing a metabolomic analysis of the soils in two rainforests in French Guiana using 31P nuclear magnetic resonance (NMR). We analysed 31P NMR chemical shifts in soil solutions of model P compounds, including inorganic phosphates, orthophosphate mono- and diesters, phosphonates, and organic polyphosphates. The identity of the tree species (growing above the soil samples) explained > 53% of the total variance of the 31P NMR metabolomic profiles of the soils, suggesting species-specific ecological niches and/or species-specific interactions with the soil microbiome and soil trophic web structure and functionality determining the use and production of P compounds. Differences at regional and topographic levels also explained some part of the the total variance of the 31P NMR profiles, although less than the influence of the tree species. Multivariate analyses of soil 31P NMR metabolomics data indicated higher soil concentrations of P biomolecules involved in the active use of P (nucleic acids and molecules involved with energy and anabolism) in soils with lower concentrations of total soil P and higher concentrations of P-storing biomolecules in soils with higher concentrations of total P. CONCLUSIONS: The results strongly suggest "niches" of soil P profiles associated with physical gradients, mostly topographic position, and with the specific distribution of species along this gradient, which is associated with species-specific strategies of soil P mineralisation, mobilisation, use, and uptake.


Asunto(s)
Microbiota , Fósforo , Bosque Lluvioso , Árboles , Guyana Francesa , Fosfatos , Suelo
6.
Chemosphere ; 355: 141898, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579951

RESUMEN

Global warming trend is accelerating. This study proposes a green and economical methane (CH4) control strategy by plant combination in constructed wetlands (CWs). In this study, a single planting of Acorus calamus L. hybrid constructed wetland (HCW-A) and a mixed planting of Acorus calamus L. and Eichhornia crassipes (Mart.) Solms hybrid constructed wetland (HCW-EA) were constructed. The differences in nitrogen removal performance and CH4 emissions between HCW-A and HCW-EA were compared and analyzed. The findings indicated that HCW-EA demonstrated significant improvements over HCW-A, with NH4+-N and TN removal rates increasing by 21.61% and 16.38% respectively, and CH4 emissions decreased by 43.36%. The microbiological analysis results showed that plant combination promoted the enrichment of Proteobacteria, Alphaproteobacteria and Bacillus. More nitrifying bacteria carrying nxrA genes and denitrifying bacteria carrying nirK genes accelerated the nitrogen transformation process. In addition, the absolute abundance ratio of pmoA/mcrA increased, reducing the release of CH4.


Asunto(s)
Desnitrificación , Humedales , Nitrógeno , Plantas , Genes Bacterianos
7.
Environ Monit Assess ; 196(5): 419, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570389

RESUMEN

Seasonally astatic aquatic habitats are important ecologically, municipally, and agriculturally. Regulatory agencies and conservation organizations have developed various plans for protecting or constructing temporary wetlands, resulting in habitat monitoring requirements, particularly as relates to restoration and constructed habitats. Unfortunately, there has been no effort to develop a unified, consistent method for wetland biological monitoring. This is particularly true for habitats important in a regulatory sense. We conducted macroinvertebrate bioassessment in constructed vernal pools in California, USA, to assess habitat functionality. This tool is modified from aquatic bioassessment; a primary tool of regulatory agencies in measuring habitat health and water quality and should be equally applicable to seasonally astatic wetlands globally.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Humedales , Estaciones del Año , Calidad del Agua
8.
Environ Monit Assess ; 196(5): 425, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573498

RESUMEN

The remediation of polluted soil and water stands as a paramount task in safeguarding environmental sustainability and ensuring a dependable water source. Biochar, celebrated for its capacity to enhance soil quality, stimulate plant growth, and adsorb a wide spectrum of contaminants, including organic and inorganic pollutants, within constructed wetlands, emerges as a promising solution. This review article is dedicated to examining the effects of biochar amendments on the efficiency of wastewater purification within constructed wetlands. This comprehensive review entails an extensive investigation of biochar's feedstock selection, production processes, characterization methods, and its application within constructed wetlands. It also encompasses an exploration of the design criteria necessary for the integration of biochar into constructed wetland systems. Moreover, a comprehensive analysis of recent research findings pertains to the role of biochar-based wetlands in the removal of both organic and inorganic pollutants. The principal objectives of this review are to provide novel and thorough perspectives on the conceptualization and implementation of biochar-based constructed wetlands for the treatment of organic and inorganic pollutants. Additionally, it seeks to identify potential directions for future research and application while addressing prevailing gaps in knowledge and limitations. Furthermore, the study delves into the potential limitations and risks associated with employing biochar in environmental remediation. Nevertheless, it is crucial to highlight that there is a significant paucity of data regarding the influence of biochar on the efficiency of wastewater treatment in constructed wetlands, with particular regard to its impact on the removal of both organic and inorganic pollutants.


Asunto(s)
Carbón Orgánico , Contaminantes Ambientales , Humedales , Monitoreo del Ambiente , Biodegradación Ambiental , Suelo , Agua
9.
Conserv Biol ; : e14259, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38571448

RESUMEN

Approximately one quarter of the earth's population directly harvests natural resources to meet their daily needs. These individuals are disproportionately required to alter their behaviors in response to increasing climatic variability and global biodiversity loss. Much of the ever-ambitious global conservation agenda relies on the voluntary uptake of conservation behaviors in such populations. Thus, it is critical to understand how such individuals perceive environmental change and use conservation practices as a tool to protect their well-being. We developed a participatory mapping activity to elicit spatially explicit perceptions of forest change and its drivers across 43 mangrove-dependent communities in Pemba, Tanzania. We administered this activity along with a questionnaire regarding conservation preferences and behaviors to 423 individuals across those 43 communities. We analyzed these data with a set of Bayesian hierarchical statistical models. Perceived cover loss in 50% of a community's mangrove area drove individuals to decrease proposed limits on fuelwood bundles from 2.74 (forest perceived as intact) to 2.37 if participants believed resultant gains in mangrove cover would not be stolen by outsiders. Conversely, individuals who believed their community mangrove forests were at high risk of theft loosened their proposed harvest limits from 1.26 to 2.75 bundles of fuelwood in response to the same perceived forest decline. High rates of intergroup competition and mangrove loss were thus driving a self-reinforcing increase in unsustainable harvesting preferences in community forests in this system. This finding demonstrates a mechanism by which increasing environmental decline may cause communities to forgo conservation practices, rather than adopt them, as is often assumed in much community-based conservation planning. However, we also found that when effective boundaries were present, individuals were willing to limit their own harvests to stem such perceived decline.


Efectos de las percepciones del cambio forestal y la competencia intergrupal en los comportamientos de conservación comunitarios Resumen Aproximadamente una cuarta parte de la población mundial aprovecha directamente los recursos naturales para satisfacer sus necesidades diarias. Estos individuos se ven desproporcionadamente obligados a alterar sus comportamientos en respuesta a la creciente variabilidad climática y la pérdida de biodiversidad global. Gran parte de la ambiciosa agenda de conservación global se basa en la adopción voluntaria de comportamientos de conservación en dichas poblaciones. Por lo tanto, es fundamental comprender cómo esas personas perciben el cambio ambiental y utilizan las prácticas de conservación como herramienta para proteger su bienestar. Desarrollamos una actividad de mapeo participativo para generar percepciones espacialmente explícitas del cambio forestal y sus causantes en 43 comunidades dependientes de manglares en Pemba, Tanzania. Administramos esta actividad junto con un cuestionario sobre preferencias y comportamientos de conservación a 423 personas en esas 43 comunidades. Analizamos estos datos mediante un conjunto de modelos estadísticos jerárquicos bayesianos. La pérdida de cobertura percibida en el 50% del área de manglares de una comunidad llevó a los individuos a reducir los límites propuestos para los paquetes de leña de 2.74 (bosque percibido como intacto) a 2.37 si los participantes creían que las ganancias resultantes en la cobertura de manglares no serían robadas por personas ajenas a la comunidad. Por el contrario, las personas que creían que los bosques de manglares de su comunidad corrían un alto riesgo de robo flexibilizaron los límites de cosecha propuestos de 1.26 a 2.75 haces de leña en respuesta a la misma disminución percibida del bosque. Por lo tanto, las altas tasas de competencia entre grupos y pérdida de manglares estaban impulsando un aumento, que se auto reforzaba, en las preferencias de aprovechamiento insostenibles en los bosques comunitarios de este sistema. Este hallazgo muestra un mecanismo por el cual el creciente deterioro ambiental puede hacer que las comunidades renuncien a las prácticas de conservación, en lugar de adoptarlas, como a menudo se supone en gran parte de la planificación de la conservación basada en la comunidad. Sin embargo, también encontramos que cuando existían límites efectivos, los individuos estaban dispuestos a restringir sus propias cosechas para frenar esa disminución percibida.

10.
Water Sci Technol ; 89(6): 1466-1481, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557712

RESUMEN

Floating treatment wetlands (FTWs) have the potential to improve the quality of wastewater discharges, yet design basics are unavailable to size these systems. This study investigates the effect of FTWs' coverage ratio and hydraulic retention time on agri-food wastewater treatment. This was studied in a pilot-scale experiment comprising four lagoons (6.5 m3 each) fed with real effluent from an existing tertiary treatment lagoon. An evaluation of FTW of different sizes (L24, L48, and L72 representing 24, 48, and 72% of pilot lagoons surface areas) and a control, L0 (without FTW), was performed over 16 months. Overall, L72 and L48 moderately improved total nitrogen (TN) mass removal compared to L0 (p < 0.05), while L24 exhibited similar TN mass removal (p = 0.196). The highest improvement was observed for L72, exhibiting up to 55% (mean of 13%) greater N mass removal than the control. The net increase in TN removal by FTWs was mainly related to denitrification, promoted by decreasing dissolved oxygen for increasing FTW coverage ratio. Residence time, temperature, and dissolved oxygen were the main parameters driving TN removal by FTWs. Retrofitting existing lagoons with FTW can facilitate N retrieval through plant harvesting, thereby reducing N remobilization from sediment (common in conventional lagoons).


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Eliminación de Residuos Líquidos , Desnitrificación , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Oxígeno
11.
Vet Q ; 44(1): 1-7, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38596900

RESUMEN

In a retrospective metatranscriptomics study, we identified tick-borne encephalitis virus (TBEV) to be the causative agent for a fatal non-suppurative meningoencephalitis in a three-week-old Dalmatian puppy in Switzerland. Further investigations showed that the two other littermates with similar signs and pathological lesions were also positive for TBEV. By using an unbiased approach of combining high-throughput sequencing (HTS) and bioinformatics we were able to solve the etiology and discover an unusual case of TBEV in three young puppies. Based on our findings, we suggest that a vector-independent transmission of TBEV occurred and that most likely an intrauterine infection led to the severe and fulminant disease of the entire litter. We were able to demonstrate the presence of TBEV RNA by in situ hybridization (ISH) in the brain of all three puppies. Furthermore, we were able to detect TBEV by RT-qPCR in total RNA extracted from formalin-fixed and paraffin embedded (FFPE) blocks containing multiple peripheral organs. Overall, our findings shed light on alternative vector-independent transmission routes of TBEV infections in dogs and encourage veterinary practitioners to consider TBEV as an important differential diagnosis in neurological cases in dogs.


Asunto(s)
Enfermedades de los Perros , Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Animales , Perros , Encefalitis Transmitida por Garrapatas/diagnóstico , Encefalitis Transmitida por Garrapatas/veterinaria , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Estudios Retrospectivos , ARN , Enfermedades de los Perros/diagnóstico
12.
Environ Geochem Health ; 46(5): 167, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592380

RESUMEN

Microorganisms are crucial elements of terrestrial ecosystems, which play significant roles in improving soil physicochemical properties, providing plant growth nutrients, degrading toxic and harmful chemicals, and biogeochemical cycling. Variations in the types and quantities of root exudates among different plants greatly alter soil physicochemical properties and result in variations in the diversity, structure, and function of soil microorganisms. Not much is understood about the differences of soil fungi and archaea communities for different plant communities in coastal wetlands, and their response mechanisms to environmental changes. In this study, fungal and archaea communities in soils of Suaeda salsa, Phragmites australis, and Spartina alterniflora in the intertidal habitat of coastal wetlands were selected for research. Soil fungi and archaea were analyzed for diversity, community structure, and function using high throughput ITS and 16S rRNA gene sequencing. The study revealed significant differences in fungi and archaea's diversity and community structure in the rhizosphere soil of three plant communities. At the same time, there is no significant difference in the functional groups. SOM, TP, AP, MC, EC and SOM, TN, TP, AP, MC, EC are the primary environmental determinants affecting changes in soil fungal and archaeal communities, respectively. Variations in the diversity, community structure, and ecological functions of fungi and archaea can be used as indicators characterizing the impact of external disturbances on the soil environment, providing a theoretical foundation for the effective utilization of soil microbial resources, thereby achieving the goal of environmental protection and health promotion.


Asunto(s)
Ecosistema , Humedales , Plantas Tolerantes a la Sal , ARN Ribosómico 16S , Archaea/genética , Poaceae , Suelo , Hongos/genética
13.
PLoS One ; 19(4): e0301795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598506

RESUMEN

Wetland vegetation and ecology of Lake Abaya in the southern Ethiopia was studied to determine floristic composition, plant community type and vegetation ecology. A total of 102 plots were laid along transects that were set up preferentially across areas where there were rapid changes in vegetation or marked environmental gradients to collect data on estimate of percentage aerial cover of plant species and environmental variables. Vegetation data was analyzed by agglomerative hierarchical cluster analysis using similarity ratio as a resemblance index and Ward's linkage method. Multivariate data analysis was performed using appropriate packages in R version 2.14.0. Canonical Correspondence Analysis (CCA) was used to explore the relationship between the species composition and environmental variables. The environmental data included in the CCA were determined using stepwise backward and forward selection of variables by ANOVA test. Statistical measurement regarding species diversity, richness and evenness of the plant community types was carried out by using Shannon-Wiener diversity indices. A total of 92 plant species belonging to 66 genera and 34 families were identified. Families Poaceae, Asteraceae, Fabaceae, Cyperaceae, Solanaceae, Euphorbiaceae and Amaranthaceae account for about 56.99% of the total proportion. Based on the cluster analysis, five plant community types were identified. The most important factors influencing the plant species composition and pattern of wetland plant communities were water drainage, water depth, land use, slope, altitude, and hydrogeomorphology. Therefore, these factors should be considered in future management and protection under the circumstance of climate change and human activities.


Asunto(s)
Biodiversidad , Humedales , Humanos , Etiopía , Lagos , Plantas , Agua
14.
J Environ Manage ; 357: 120715, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579465

RESUMEN

The effluents from conventional wastewater treatment plants (WWTP), even if accomplishing quality regulations, substantially differ in their characteristics with those of waters in natural environments. Constructed wetlands (CWs) serve as transitional ecosystems within WWTPs, mitigating these differences and restoring natural features before water is poured into the natural environment. Our study focused on an experimental surface-flow CW naturalizing the WWTP effluent in a semiarid area in Eastern Spain. Despite relatively low pollutant concentrations entering the CW, it effectively further reduced settled organic matter and nitrogen. Dissolved organic matter (DOM) reaching the CW was mainly protein-like, yet optical property changes in the DOM indicated increased humification, aromaticity, and stabilization as it flowed through the CW. Flow cytometry analysis revealed that the CW released less abundant but more active bacterial populations than those received. MiSeq Illumina sequencing highlighted changes in the prokaryotic community composition, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria dominating the CW outflow. Functional prediction tools (FaproTax and PICRUSt2) demonstrated a shift towards microbial guilds aligned with those of the natural aquatic environments, increased aerobic chemoheterotrophs, photoautotrophs, and metabolic reactions at higher redox potentials. Enhanced capabilities for degrading plant material correlated well with changes in the DOM pool. Our findings emphasize the role of CWs in releasing biochemically stable DOM and functionally suited microbial populations for natural receiving environments. Consequently, we propose CWs as a naturalization nature-based solution (NBS) in water-scarce regions like the Mediterranean, where reclaimed discharged water can significantly contribute to ecosystem's water resources compared to natural flows.


Asunto(s)
Aguas Residuales , Humedales , Ecosistema , Ciudadanía , Bacterias , Materia Orgánica Disuelta , Región Mediterránea , Eliminación de Residuos Líquidos
15.
J Environ Manage ; 357: 120776, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579468

RESUMEN

Hydro-Fluctuation Belt (HFB), a periodically exposed bank area formed by changes in water level fluctuations, is critical for damaging the reservoir wetland landscape and ecological balance. Thus, it is important to explore the mechanism of hydrological conditions on the plant-soil system of the HFB for protection of the reservoir wetland and landscape restoration. Here, we investigated the response of plant community characteristics and soil environment of the HFB of Tonghui River National Wetland Park (China), is a typical reservoir wetland, to the duration of inundation, as well as the correlation between the distribution of dominant plants and soil pH, nutrient contents, and enzyme activity by linear regression and canonical correlation analyses. The results show that as the duration of inundation decreases, the vegetation within the HFB is successional from annual or biennial herbs to perennial herbs and shrubs, with dominant plant species prominent and uneven distribution of species. Soil nutrient contents and enzyme activities of HFB decreased with increasing inundation duration. Dominant species of HFB plant community are related to soil environment, with water content, pH, urease, and available potassium being principle soil environmental factors affecting their distribution. When HFB was inundated for 0-30 days, soil pH was strongly acidic, with available potassium content above 150 mg kg-1 and higher urease activity, distributed with Arundo donax L., Polygonum perfoliatum L., Alternanthera philoxeroides (Mart.) Griseb., and Daucus carota L. communities. When inundated for 30-80 days, soil pH was acidic, with lower available potassium content (50-150 mg kg-1) and urease activity, distributed with Beckmannia syzigachne (Steud.) Fern.+ Polygonum lapathifolium L., Polygonum lapathifolium L., Medicago lupulina L. + Dysphania ambrosioides L. and Leptochloa panicea (Retz.) Ohwi communities. Using the constructed HFB plant-soil correlation model, changes in the wetland soil environment can be quickly judged by the succession of plant dominant species, which provides a simpler method for the monitoring of the soil environment in the reservoir wetland, and is of great significance for the scientific management and reasonable protection of the reservoir-type wetland ecosystem.


Asunto(s)
Ecosistema , Humedales , Suelo/química , Ureasa , Plantas , Agua , Poaceae , China , Potasio
16.
Int. microbiol ; 27(2): 607-614, Abr. 2024. ilus
Artículo en Inglés | IBECS | ID: ibc-232305

RESUMEN

Wetlands are the main natural sources of methane emissions, which make up a significant portion of greenhouse gas emissions. Such wetland patches serve as rich habitats for aerobic methanotrophs. Limited knowledge of methanotrophs from tropical wetlands widens the scope of study from these habitats. In the present study, a freshwater wetland in a tropical region in India was sampled and serially diluted to obtain methanotrophs in culture. This was followed by the isolation of methanotrophs on agarose-containing plates, incubated under methane: air atmosphere. Methanotrophs are difficult to cultivate, and very few cultures of methanotrophs are available from tropical wetlands. Our current study reports the cultivation of a diverse community of methanotrophs from six genera, namely, Methylomonas, Methylococcus, Methylomagnum, Methylocucumis (type I methanotrophs) along with Methylocystis, Methylosinus (type II methanotrophs). A high abundance of methanotrophs (106–1010 methanotrophs/g fresh weight) was observed in the samples. A Methylococcus strain could represent a putative novel species that was also isolated. Cultures of Methylomagnum and Methylocucumis, two newly described type I methanotrophs exclusively found in rice fields, were obtained. A large number of Methylomonas koyamae strains were cultured. Our study is pioneering in the documentation of culturable methanotrophs from a typical tropical wetland patch. The isolated methanotrophs can act as models for studying methanotroph-based methane mitigation from wetland habitats and can be used for various mitigation and valorization applications. (AU)


Asunto(s)
Humedales , Metano , Efecto Invernadero , Gases , Ecosistema , Agua Dulce
17.
Mar Environ Res ; 197: 106479, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583357

RESUMEN

Tropical seascapes rely on the feedback relationships among mangrove forests, seagrass meadows, and coral reefs, as they mutually facilitate and enhance each other's functionality. Biogeochemical fluxes link tropical coastal habitats by exchanging material flows and energy through various natural processes that determine the conditions for life and ecosystem functioning. However, little is known about the seascape-scale implications of anthropogenic disruptions to these linkages. Despite the limited number of integrated empirical studies available (with only 11 out of 81 selected studies focusing on the integrated dynamics of mangroves, seagrass, and corals), this review emphasizes the importance of biogeochemical fluxes for ecosystem connectivity in tropical seascapes. It identifies four primary anthropogenic influences that can disturb these fluxes-nutrient enrichment, chemical pollution, microbial pollution, and solid waste accumulation-resulting in eutrophication, increased disease incidence, toxicity, and disruptions to water carbonate chemistry. This review also highlights significant knowledge gaps in our understanding of biogeochemical fluxes and ecosystem responses to perturbations in tropical seascapes. Addressing these knowledge gaps is crucial for developing practical strategies to conserve and manage connected seascapes effectively. Integrated research is needed to shed light on the complex interactions and feedback mechanisms within these ecosystems, providing valuable insights for conservation and management practices.


Asunto(s)
Antozoos , Ecosistema , Animales , Humanos , Arrecifes de Coral , Humedales , Eutrofización
18.
Mar Environ Res ; 197: 106485, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598960

RESUMEN

Although saltmarshes are critical coastal ecosystems they are threatened by human activities and sea-level rise (SLR). Long-term restoration and management strategies are often hampered by an insufficient understanding of the past, present, and future processes that influence tidal wetland functionality and change. As understanding vegetation distribution in relation to elevation and tidal hydroperiod is often the basis of restoration and management decisions, this study investigated the relationships between micro-topography, tidal hydroperiod, and the distribution of saltmarshes, mangroves, and unvegetated flats in a tropical estuary situated within a Great Barrier Reef Catchment in North Queensland, Australia. A combination of high-resolution unattended-aerial-vehicle (UAV)-derived digital elevation model (DEMs) and land cover coupled with 2D hydrodynamic modelling was used to investigate these aspects. Zonation was more complex than generally recognised in restoration and legislation, with overlapping distribution across elevation. Additionally, although each type of tidal wetland cover had distinct mean hydroperiods, and elevation and hydroperiods were strongly correlated, elevation explained only 15% of the variability in tidal wetland cover distribution. This suggests that other factors (e.g., groundwater dynamics) likely contribute to tidal wetland cover zonation patterns. These findings underline that simplistic rules in the causality of tidal wetlands need to be applied with caution. Their applicability in management and restoration are likely to vary depending on contexts, as observed in our study site, with varying environmental and biological factors playing important roles in the distribution patterns of tidal wetland components. We also identified strong monthly variability in tidal hydroperiods and connectivity experienced by each tidal wetland cover (e.g., 10.26% of succulent saltmarshes were inundated during lower-than-average tides compared to 66% in higher than-average tides), highlighting the importance of integrating temporal dynamics in tidal wetland research and management. Additionally, we explored the potential effects of sea-level rise (SLR) on the tidal hydroperiods and connectivity of our study site. The results show that the inundation experienced by each tidal wetland cover may increase importantly if vegetation does not keep up with SLR (e.g., under a 0.8 m sea level scenarios, mean maximum depth of succulent saltmarsh in higher-than-average tides is 184.1 mm higher than the current mean-maximum inundation depth of mangroves). This underlines the importance of acquiring detailed spatio-temporally resolved data to enable the development of robust long-term and adaptive saltmarsh management strategies. Our results are discussed from a management and restoration perspective. We highlight the uncertainties and complexities in understanding the processes influencing tidal wetland functionality, and hence, their management and restoration prospects.


Asunto(s)
Agua Subterránea , Humedales , Humanos , Ecosistema , Estuarios , Australia
19.
Mar Environ Res ; 197: 106476, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609789

RESUMEN

Blue carbon ecosystems, such as mangrove, seagrass bed and salt marsh, have attracted increasing attention due to their remarkable capacity for efficient carbon sequestration. However, the current threat posed by human activities to these ecosystems necessitates the characterization of their changes and identification of the primary driving factors in order to facilitate the gradual restoration of blue carbon ecosystems. In this study, we present an analysis of the spatio-temporal characteristics and primary influencing factors governing carbon sequestration in mangrove and seagrass beds located in Hainan Island. The findings revealed a 40% decline in carbon sequestration by mangroves from 1976 to 2017, while seagrass beds exhibited a 13% decrease in carbon sequestering between 2009 and 2016. The decline in carbon sequestration was primarily concentrated in Wenchang city, with aquaculture and population growth identified as the primary driving factors. Despite the implementation of measures aimed at reducing aquaculture in Hainan Island to promote blue carbon sequestration over the past two decades, the resulting recovery remains insufficient in achieving macro-level goals for carbon sequestration. This study emphasizes the necessity of safeguarding blue carbon ecosystems in Hainan Island by effectively mitigating anthropogenic disturbances.


Asunto(s)
Secuestro de Carbono , Ecosistema , Humanos , Humedales , China , Carbono/análisis
20.
J Gastrointest Surg ; 28(4): 494-500, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583901

RESUMEN

BACKGROUND: Although malnutrition has been linked to worse healthcare outcomes, the broader context of food environments has not been examined relative to surgical outcomes. We sought to define the impact of food environment on postoperative outcomes of patients undergoing resection for colorectal cancer (CRC). METHODS: Patients who underwent surgery for CRC between 2014 and 2020 were identified from the Medicare database. Patient-level data were linked to the United States Department of Agriculture data on food environment. Multivariable regression was used to examine the association between food environment and the likelihood of achieving a textbook outcome (TO). TO was defined as the absence of an extended length of stay (≥75th percentile), postoperative complications, readmission, and mortality within 90 days. RESULTS: A total of 260,813 patients from 3017 counties were included in the study. Patients from unhealthy food environments were more likely to be Black, have a higher Charlson Comorbidity Index, and reside in areas with higher social vulnerability (all P < .01). Patients residing in unhealthy food environments were less likely to achieve a TO than that of patients residing in the healthiest food environments (food swamp: 48.8% vs 52.4%; food desert: 47.9% vs 53.7%; P < .05). On multivariable analysis, individuals residing in the unhealthy food environments had lower odds of achieving a TO than those of patients living in the healthiest food environments (food swamp: OR, 0.86; 95% CI, 0.83-0.90; food desert: OR, 0.79; 95% CI, 0.76-0.82); P < .05). CONCLUSION: The surrounding food environment of patients may serve as a modifiable sociodemographic risk factor that contributes to disparities in postoperative CRC outcomes.


Asunto(s)
Cirugía Colorrectal , Procedimientos Quirúrgicos del Sistema Digestivo , Humanos , Anciano , Estados Unidos/epidemiología , Desiertos Alimentarios , Humedales , Medicare , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...