Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.761
Filtrar
1.
Nat Commun ; 15(1): 3228, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622147

RESUMEN

Seamounts are globally distributed across the oceans and form one of the major oceanic biomes. Here, we utilized combined analyses of bulk metagenome and virome to study viral communities in seamount sediments in the western Pacific Ocean. Phylogenetic analyses and the protein-sharing network demonstrate extensive diversity and previously unknown viral clades. Inference of virus-host linkages uncovers extensive interactions between viruses and dominant prokaryote lineages, and suggests that viruses play significant roles in carbon, sulfur, and nitrogen cycling by compensating or augmenting host metabolisms. Moreover, temperate viruses are predicted to be prevalent in seamount sediments, which tend to carry auxiliary metabolic genes for host survivability. Intriguingly, the geographical features of seamounts likely compromise the connectivity of viral communities and thus contribute to the high divergence of viral genetic spaces and populations across seamounts. Altogether, these findings provides knowledge essential for understanding the biogeography and ecological roles of viruses in globally widespread seamounts.


Asunto(s)
Virus , Filogenia , Océanos y Mares , Ecosistema , Genes Virales
2.
Environ Sci Technol ; 58(15): 6716-6724, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38573586

RESUMEN

Wildfires in Australia have attracted extensive attention in recent years, especially for the devastating 2019-2020 fire season. Remote forcing, such as those from tropical oceans, plays an important role in driving the abnormal weather conditions associated with wildfires. However, whether high latitude climate change can impact Australian fires is largely unclear. In this study, we reveal a robust relationship between Antarctic sea ice concentration (SIC), primarily over the Amundsen Sea region, with Australian springtime fire activity, by using reanalysis data sets, AMIP simulation results, and a state-of-the-art climate model simulation. Specifically, a diminished Amundsen SIC leads to the formation of a high-pressure system above Australia as a result of the eastward propagation of Rossby waves. Meanwhile, two strengthened meridional cells originating from the tropic and polar regions also enhance subsiding airflow in Australia, resulting in prolonged arid and high-temperature conditions. This mechanism explains about 28% of the variability of Australian fire weather and contributed more than 40% to the 2019 extreme burning event, especially in the eastern hotspots. These findings contribute to our understanding of polar-low latitude climate teleconnection and have important implications for projecting Australian fires as well as the global environment.


Asunto(s)
Incendios , Incendios Forestales , Australia , Cubierta de Hielo , Océanos y Mares
3.
Opt Express ; 32(7): 12141-12159, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571046

RESUMEN

It is important to determine the relationship between the concentration of chlorophyll a (Chla) and the inherent optical properties (IOPs) of ocean water to develop optical models and algorithms that characterize the biogeochemical properties and estimate biological pumping and carbon flux in this environment. However, previous studies reported relatively large variations in the particulate backscattering coefficient (bbp(λ)) and Chla from more eutrophic high-latitude waters to clear oligotrophic waters, especially in oligotrophic oceanic areas where these two variables have little covariation. In this study, we examined the variability of bbp(λ) and Chla in the euphotic layer in oligotrophic areas of the tropical Western Pacific Ocean and determined the sources of these variations by reassessment of in-situ measurements and the biogeochemical-argo (BGC-Argo) database. Our findings identified covariation of bbp(λ) and Chla in the water column below the deep Chla maximum (DCM) layer, and indicated that there was no significant correlation relationship between bbp(λ) and Chla in the upper layer of the DCM. Particles smaller than 3.2 µm that were in the water column above the DCM layer had a large effect on the bbp(λ) in the vertical profile, but particles larger than 3.2 µm and smaller than 10 µm had the largest effect on the bbp(λ) in the water column below the DCM layer. The contribution of non-algal particles (NAPs) to backscattering is up to 50%, which occurs in the water depth of 50 m and not consistent with the distribution of Chla. Phytoplankton and NAPs were modeled as coated spheres and homogeneous spherical particles to simulate the bbp(λ) of the vertical profile by Aden-Kerker method and Mie theory, and the results also indicated that the backscattering caused by particles less than 20 µm were closer to the measured data when they were below and above the DCM layer, respectively. This relationship also reflects the bbp(λ) of particles in the upper water was significantly affected particle size, but bbp(λ) in the lower water was significantly affected by Chla concentration. This effect may have relationship with phytoplankton photoacclimation and the relationship of a phytoplankton biomass maximum with particle size distribution in the water column according to the previous relevant studies. These characteristics also had spatial and seasonal variations due to changes of Chla concentration at the surface and at different depths. There was mostly a linear relationship between Chla and bbp(700) during winter. During other seasons, the relationship between these two variables was better characterized by a power function (or a logarithmic function) in the lower layer of the DCM. The spatial and vertical relationships between the bbp(λ) and Chla and the corresponding variations in the types of particles described in this study provide parameters that can be used for accurate estimation of regional geochemical processes.


Asunto(s)
Clorofila , Agua , Clorofila A , Océano Pacífico , Océanos y Mares , Biomasa , Fitoplancton/química
4.
Glob Chang Biol ; 30(4): e17255, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572638

RESUMEN

Global warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S-crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non-essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.


Asunto(s)
Octopodiformes , Animales , Temperatura , Cambio Climático , Calentamiento Global , Océanos y Mares
5.
J Emerg Manag ; 22(7): 47-61, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573729

RESUMEN

Predicting the consequences of a major coastal storm is increasingly difficult as the result of global climate change and growing societal dependence on critical infrastructure (CI). Past storms are no longer a reliable predictor of future weather events, and the traditional approach to vulnerability assessment presents accumulated loss in largely quantitative terms that lack the specificity local emergency managers need to develop effective plans and mitigation strategies. The Rhode Island Coastal Hazards Modeling and Prediction (RI-CHAMP) system is a geographic information system (GIS)-based modeling tool that combines high-resolution storm simulations with geolocated vulnerability data to predict specific consequences based on local concerns about impacts to CI. This case study discusses implementing RI-CHAMP for the State of Rhode Island to predict impacts of wind and inundation on its CI during a hurricane, tropical storm, or nor'easter. This paper addresses the collection and field verification of vulnerability data, along with RI-CHAMP's process for integrating those data with storm models. The project deeply engaged end-users (emergency managers, facility managers, and other stakeholders) in developing RI-CHAMP's ArcGIS Online dashboard to ensure it provides specific, actionable data. The results of real and synthetic storm models are presented along with discussion of how the data in these simulations are being used by state and local emergency managers, facility owners, and others.


Asunto(s)
Tormentas Ciclónicas , Humanos , Rhode Island , Cambio Climático , Simulación por Computador , Océanos y Mares
6.
Microbiome ; 12(1): 67, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561814

RESUMEN

Understanding the characteristics and structure of populations is fundamental to comprehending ecosystem processes and evolutionary adaptations. While the study of animal and plant populations has spanned a few centuries, microbial populations have been under scientific scrutiny for a considerably shorter period. In the ocean, analyzing the genetic composition of microbial populations and their adaptations to multiple niches can yield important insights into ecosystem function and the microbiome's response to global change. However, microbial populations have remained elusive to the scientific community due to the challenges associated with isolating microorganisms in the laboratory. Today, advancements in large-scale metagenomics and metatranscriptomics facilitate the investigation of populations from many uncultured microbial species directly from their habitats. The knowledge acquired thus far reveals substantial genetic diversity among various microbial species, showcasing distinct patterns of population differentiation and adaptations, and highlighting the significant role of selection in structuring populations. In the coming years, population genomics is expected to significantly increase our understanding of the architecture and functioning of the ocean microbiome, providing insights into its vulnerability or resilience in the face of ongoing global change. Video Abstract.


Asunto(s)
Ecosistema , Microbiota , Animales , Microbiota/genética , Océanos y Mares , Metagenómica
7.
Sci Rep ; 14(1): 8256, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589552

RESUMEN

Yellowfin tuna, Thunnus albacares, represents an important component of commercial and recreational fisheries in the Gulf of Mexico (GoM). We investigated the influence of environmental conditions on the spatiotemporal distribution of yellowfin tuna using fisheries' catch data spanning 2012-2019 within Mexican waters. We implemented hierarchical Bayesian regression models with spatial and temporal random effects and fixed effects of several environmental covariates to predict habitat suitability (HS) for the species. The best model included spatial and interannual anomalies of the absolute dynamic topography of the ocean surface (ADTSA and ADTIA, respectively), bottom depth, and a seasonal cyclical random effect. High catches occurred mainly towards anticyclonic features at bottom depths > 1000 m. The spatial extent of HS was higher in years with positive ADTIA, which implies more anticyclonic activity. The highest values of HS (> 0.7) generally occurred at positive ADTSA in oceanic waters of the central and northern GoM. However, high HS values (> 0.6) were observed in the southern GoM, in waters with cyclonic activity during summer. Our results highlight the importance of mesoscale features for the spatiotemporal distribution of yellowfin tunas and could help to develop dynamic fisheries management strategies in Mexico and the U.S. for this valuable resource.


Asunto(s)
Ecosistema , Atún , Animales , Golfo de México , Teorema de Bayes , Océanos y Mares
8.
PLoS One ; 19(4): e0298139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38564528

RESUMEN

Bacterial communities directly influence ecological processes in the ocean, and depth has a major influence due to the changeover in primary energy sources between the sunlit photic zone and dark ocean. Here, we examine the abundance and diversity of bacteria in Monterey Bay depth profiles collected from the surface to just above the sediments (e.g., 2000 m). Bacterial abundance in these Pacific Ocean samples decreased by >1 order of magnitude, from 1.22 ±0.69 ×106 cells ml-1 in the variable photic zone to 1.44 ± 0.25 ×105 and 6.71 ± 1.23 ×104 cells ml-1 in the mesopelagic and bathypelagic, respectively. V1-V2 16S rRNA gene profiling showed diversity increased sharply between the photic and mesopelagic zones. Weighted Gene Correlation Network Analysis clustered co-occurring bacterial amplicon sequence variants (ASVs) into seven subnetwork modules, of which five strongly correlated with depth-related factors. Within surface-associated modules there was a clear distinction between a 'copiotrophic' module, correlating with chlorophyll and dominated by e.g., Flavobacteriales and Rhodobacteraceae, and an 'oligotrophic' module dominated by diverse Oceanospirillales (such as uncultured JL-ETNP-Y6, SAR86) and Pelagibacterales. Phylogenetic reconstructions of Pelagibacterales and SAR324 using full-length 16S rRNA gene data revealed several additional subclades, expanding known microdiversity within these abundant lineages, including new Pelagibacterales subclades Ia.B, Id, and IIc, which comprised 4-10% of amplicons depending on the subclade and depth zone. SAR324 and Oceanospirillales dominated in the mesopelagic, with SAR324 clade II exhibiting its highest relative abundances (17±4%) in the lower mesopelagic (300-750 m). The two newly-identified SAR324 clades showed highest relative abundances in the photic zone (clade III), while clade IV was extremely low in relative abundance, but present across dark ocean depths. Hierarchical clustering placed microbial communities from 900 m samples with those from the bathypelagic, where Marinimicrobia was distinctively relatively abundant. The patterns resolved herein, through high resolution and statistical replication, establish baselines for marine bacterial abundance and taxonomic distributions across the Monterey Bay water column, against which future change can be assessed.


Asunto(s)
Alphaproteobacteria , Gammaproteobacteria , Agua , ARN Ribosómico 16S/genética , Filogenia , Bacterias/genética , Océanos y Mares , Alphaproteobacteria/genética , Gammaproteobacteria/genética , Agua de Mar/microbiología
9.
Nat Commun ; 15(1): 2885, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570485

RESUMEN

Conflicting results remain on the impacts of climate change on marine organisms, hindering our capacity to predict the future state of marine ecosystems. To account for species-specific responses and for the ambiguous relation of most metrics to fitness, we develop a meta-analytical approach based on the deviation of responses from reference values (absolute change) to complement meta-analyses of directional (relative) changes in responses. Using this approach, we evaluate responses of fish and invertebrates to warming and acidification. We find that climate drivers induce directional changes in calcification, survival, and metabolism, and significant deviations in twice as many biological responses, including physiology, reproduction, behavior, and development. Widespread deviations of responses are detected even under moderate intensity levels of warming and acidification, while directional changes are mostly limited to more severe intensity levels. Because such deviations may result in ecological shifts impacting ecosystem structures and processes, our results suggest that climate change will likely have stronger impacts than those previously predicted based on directional changes alone.


Asunto(s)
Ecosistema , Agua de Mar , Animales , Agua de Mar/química , Invertebrados/fisiología , Cambio Climático , Organismos Acuáticos , Concentración de Iones de Hidrógeno , Océanos y Mares , Calentamiento Global
10.
Mar Environ Res ; 197: 106471, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574496

RESUMEN

Eolian dust and riverine discharge are identified as two key components of terrestrial input to the oceans. They supply micronutrients to the oceans and modify marine carbon biogeochemistry and global climate through dust-land-ocean interactions. However, it is challenging to accurately constrain regional terrestrial inputs in the past, with currently available models and geochemical proxies. The present study utilizes sedimentary wtCaCO3% records to estimate lithogenic fluxes. The depth-dependance of CaCO3 preservation in the Holocene and Last Glacial Maximum (LGM) sediments in two major basins of the tropical Northeast Atlantic Ocean is described using a carbonate dissolution model. Results show that during the LGM, reduced dust deposition and slight drops of fluvial input are found in the Canary Basin and Cape Verde margins, respectively. To supplement, carbonate deposition during the LGM indicates that the deep subtropical Northeast Atlantic is seized by more sluggish deep waters relative to today.


Asunto(s)
Carbonatos , Clima , Océanos y Mares , Océano Atlántico , Polvo/análisis
11.
Appl Plant Sci ; 12(2): e11570, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638613

RESUMEN

Premise: During the COVID-19 pandemic lockdown, all laboratory work was suspended, and we were obliged to work from home, causing delays in our research. As the disruption to supply chains made it difficult to obtain our regular lab supplies, we were obliged to search for substitutes. We became familiar with a plastic material known as biaxially oriented polypropylene (BOPP) that is widely used in the food industry for wrapping or storing fruits, vegetables, and meat. BOPP is easily dissolved in organic solvents such as xylenes, acetone, or thinner, but these reagents are very toxic, flammable, and can cause nausea in some users. After testing several alternatives, we found a polyurethane remover that proved to be an effective and relatively harmless BOPP solvent. Methods and Results: By dissolving thin slices of BOPP in a polyurethane solvent, we obtained a clean fluid that we used to obtain leaf surface prints that could be mounted on microscope slides with a coverslip. This fluid produced excellent bark and wood sections and can be used to obtain wood or charcoal surface prints. Our attempts to use it as a mounting medium were unsuccessful. Conclusions: BOPP dissolved in a polyurethane remover is a handy, versatile resource for plant microtechniques. In addition to its economic advantages, it is useful in terms of reducing plastic pollution.


Premisa: Durante el cierre por pandemia de COVID­19, se suspendió todo el trabajo de laboratorio y nos vimos obligados a trabajar desde casa, lo que provocó retrasos en nuestras investigaciones. Como la interrupción de las cadenas de suministro dificultó la obtención de nuestros suministros de laboratorio habituales, nos vimos obligados a buscar sustitutos. Nos familiarizamos con un material plástico empleado en la industria alimentaria, muy utilizado para envolver o almacenar frutas, verduras y carne. Este material se conoce como polipropileno orientado biaxialmente (BOPP, en inglés) y se disuelve fácilmente en disolventes orgánicos como xilenos, acetona o tíner. Sin embargo, estos reactivos son muy tóxicos e inflamables y pueden provocar náuseas a algunos usuarios. Tras probar varias alternativas, encontramos un removedor de poliuretano que demostró ser un disolvente eficaz para el BOPP. Métodos y Resultados: Disolviendo tiras delgadas de BOPP en un disolvente de poliuretano, obtuvimos un fluido limpio que utilizamos para obtener impresiones de la superficie de las hojas que podían montarse en portaobjetos de microscopio con un cubreobjetos. Este fluido produce excelentes secciones de corteza y madera y se puede usar para obtener impresiones de superficies de madera o carbón. Intentamos utilizarlo como medio de montaje, pero desistimos debido a los pobres resultados obtenidos. Conclusión: El BOPP disuelto en removedor de poliuretano es un recurso práctico y versátil para las microtécnicas vegetales. Además de sus ventajas económicas, es útil para evitar que el plástico llegue a las corrientes de agua y a los océanos.

12.
PLoS One ; 19(4): e0298464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630652

RESUMEN

The global population consumes more seafood from aquaculture today than from capture fisheries and although the aquaculture industry continues to grow, both seafood sectors will continue to be important to the global food supply into the future. As farming continues to expand into ocean systems, understanding how wild populations and fisheries will interact with farms will be increasingly important to informing sustainable ocean planning and management. Using a spatially explicit population and fishing model we simulate several impacts from ocean aquaculture (i.e., aggregation, protection from fishing, and impacts on fitness) to evaluate the mechanisms underlying interactions between aquaculture, wild populations and fisheries. We find that aggregation of species to farms can increase the benefits of protection from fishing that a farm provides and can have greater impacts on more mobile species. Splitting total farm area into smaller farms can benefit fishery catches, whereas larger farms can provide greater ecological benefits through conservation of wild populations. Our results provide clear lessons on how to design and co-manage expanding ocean aquaculture along with wild capture ecosystem management to benefit fisheries or conservation objectives.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Animales , Acuicultura/métodos , Abastecimiento de Alimentos , Océanos y Mares , Conservación de los Recursos Naturales , Alimentos Marinos
13.
PLoS One ; 19(4): e0299551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630753

RESUMEN

Extreme global warming and environmental changes associated with the Toarcian (Lower Jurassic) Oceanic Anoxic Event (T-OAE, ~183 Mya) profoundly impacted marine organisms and terrestrial plants. Despite the exceptionally elevated abundances of fossil insects from strata of this age, only assemblages from Germany and Luxembourg have been studied in detail. Here, we focus on the insect assemblage found in strata recording the T-OAE at Alderton Hill, Gloucestershire, UK, where <15% of specimens have previously been described. We located all known fossil insects (n = 370) from Alderton Hill, and used these to create the first comprehensive taxonomic and taphonomic analysis of the entire assemblage. We show that a diverse palaeoentomofaunal assemblage is preserved, comprising 12 orders, 21 families, 23 genera and 21 species. Fossil disarticulation is consistent with insect decay studies. The number of orders is comparable with present-day assemblages from similar latitudes (30°-40°N), including the Azores, and suggests that the palaeoentomofauna reflects a life assemblage. At Alderton, Hemiptera, Coleoptera and Orthoptera are the commonest (56.1%) orders. The high abundance of Hemiptera (22.1%) and Orthoptera (13.4%) indicates well-vegetated islands, while floral changes related to the T-OAE may be responsible for hemipteran diversification. Predatory insects are relatively abundant (~10% of the total assemblage) and we hypothesise that the co-occurrence of fish and insects within the T-OAE represents a jubilee-like event. The marginally higher proportion of sclerotised taxa compared to present-day insect assemblages possibly indicates adaptation to environmental conditions or taphonomic bias. The coeval palaeoentomofauna from Strawberry Bank, Somerset is less diverse (9 orders, 12 families, 6 genera, 3 species) and is taphonomically biased. The Alderton Hill palaeoentomofauna is interpreted to be the best-preserved and most representative insect assemblage from Toarcian strata in the UK. This study provides an essential first step towards understanding the likely influence of the T-OAE on insects.


Asunto(s)
Fósiles , Hipoxia , Humanos , Animales , Océanos y Mares , Insectos , Reino Unido
14.
PeerJ ; 12: e17131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38563000

RESUMEN

Global warming continues to exert unprecedented impacts on marine habitats. Species distribution models (SDMs) are proven powerful in predicting habitat distribution for marine demersal species under climate change impacts. The Antarctic toothfish, Dissostichus mawsoni (Norman 1937), an ecologically and commercially significant species, is endemic to the Southern Ocean. Utilizing occurrence records and environmental data, we developed an ensemble model that integrates various modelling techniques. This model characterizes species-environment relationships and predicts current and future fishable habitats of D. mawsoni under four climate change scenarios. Ice thickness, depth and mean water temperature were the top three important factors in affecting the distribution of D. mawsoni. The ensemble prediction suggests an overall expansion of fishable habitats, potentially due to the limited occurrence records from fishery-dependent surveys. Future projections indicate varying degrees of fishable habitat loss in large areas of the Amery Ice Shelf's eastern and western portions. Suitable fishable habitats, including the spawning grounds in the seamounts around the northern Ross Sea and the coastal waters of the Bellingshausen Sea and Amundsen Sea, were persistent under present and future environmental conditions, highlighting the importance to protect these climate refugia from anthropogenic disturbance. Though data deficiency existed in this study, our predictions can provide valuable information for designing climate-adaptive development and conservation strategies in maintaining the sustainability of this species.


Asunto(s)
Cambio Climático , Perciformes , Animales , Regiones Antárticas , Ecosistema , Océanos y Mares
15.
BMC Pregnancy Childbirth ; 24(1): 246, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582887

RESUMEN

INTRODUCTION: Drinking during pregnancy is the leading cause of birth defects and child developmental disorders in Europe. The adverse effects of drinking during pregnancy may include physical, behavioural and cognitive problems, known collectively as fetal alcohol spectrum disorders (FASD). Evidence-based comprehensive recommendations at the European level on how to implement preventive and treatment policies to reduce alcohol-exposed pregnancies are needed. FAR SEAS, a tendered service contract (number 20,187,106) awarded by the European Commission, aimed at developing guidelines to respond to this knowledge gap. METHODS: FAR SEAS recommendations were built on (1) a two-phase review of interventions, (2) an international expert consultation, and (3) a pilot study on prevention of FASD conducted in the Mazovia region of Poland. The review of interventions included nineteen electronic open access databases, several repositories of grey literature and a key informant consultation covering most European Union (EU) countries and an additional guidelines search. After triangulating sources, 94 records were collected. Experts contributed in the design of the research questions, addressing the gaps in the literature and reviewing the recommendations formulated. The Polish pilot added nuances from real world practice to the formulated recommendations, resulting in the final set of guidelines for dissemination. RESULTS: The FAR SEAS Guidelines comprise 23 recommendations grouped into different topics areas of policies, communication strategies, screening, brief intervention and referral to treatment, treatment and social services. The recommendations highlight the need to respect women's autonomy and avoid discrimination and stigmatization; using universal screening for women of childbearing age, including detection of other psychosocial risks (such as domestic violence); and individualized, comprehensive and multidisciplinary supportive interventions for those who require it, such as those with alcohol use disorders, including women's partners. Policies to prevent FASD should be multicomponent, and public health communication should combine information about the risks together with self-efficacy messages to promote changes. CONCLUSIONS: The FAR SEAS guidelines are a tool to support policy-makers and service managers in implementing effective programmes to reduce prenatal alcohol exposure among general and at-risk population groups. FASD prevention has to involve comprehensive and multi-level evidence-based policies and practice, with services and activities tailored to the needs of women at differing levels of risk, and with due attention to reducing stigma.


Asunto(s)
Alcoholismo , Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Femenino , Humanos , Embarazo , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/prevención & control , Europa (Continente) , Trastornos del Espectro Alcohólico Fetal/prevención & control , Trastornos del Espectro Alcohólico Fetal/epidemiología , Océanos y Mares , Proyectos Piloto , Efectos Tardíos de la Exposición Prenatal/epidemiología
16.
Sci Adv ; 10(10): eadh0477, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457496

RESUMEN

In recent years, the application of metagenomics techniques has advanced our understanding of plankton communities and their global distribution. Despite this progress, the relationship between the abundance distribution of diatom species and varying marine environmental conditions remains poorly understood. This study, leveraging data from the Tara Oceans expedition, tests the hypothesis that diatoms in sampled stations display a consistent species abundance distribution structure, as though they were sampled from a single ocean-wide metacommunity. Using a neutral sampling theory, we thus develop a framework to estimate the structure and diversity of diatom communities at each sampling station given the shape of the species abundance distribution of the metacommunity and the information of a reference station. Our analysis reveals a substantial temperature gradient in the discrepancies between predicted and observed biodiversity across the sampled stations. These findings challenge the hypothesis of a single neutral metacommunity, indicating that environmental differences substantially influence both the composition and structure of diatom communities.


Asunto(s)
Diatomeas , Plancton , Biodiversidad , Océanos y Mares , Ecosistema
17.
Environ Microbiol Rep ; 16(2): e13244, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38544360

RESUMEN

A small pigmented flagellate, Micromonas, is prevalently distributed in coastal and pelagic waters. However, there have been few studies conducted to quantify their abundance in the marginal seas of the Northwest Pacific Ocean. In this study, we used fluorescent in situ hybridization with tyramide signal amplification (TSA-FISH) to reveal the spatial distribution of Micromonas in the northern South China Sea (SCS). On average, the abundance of Micromonas was 317 cells mL-1, with the average proportions in the nanoflagellates (NF) and photosynthetic picoeukaryotes (PPE) communities being 10.94% and 15.39%, respectively. This indicates a wide distribution and dominance of this genus in the studied area. The relationships between Micromonas abundance and various environmental factors suggested that biotic correlations play more important roles than physicochemical filtering on Micromonas assemblage. This may indicate a broad environmental adaptation spectrum of this genus through its flexibility in terms of resource acquisition strategies. In summary, this study provides insight into the spatial distribution pattern of Micromonas and highlights its crucial contribution to the composition of NFs and PPE communities, which rely on biological interaction to respond to the changing environmental conditions in the northern SCS.


Asunto(s)
Chlorophyta , Fotosíntesis , Hibridación Fluorescente in Situ , Océanos y Mares , Océano Pacífico , China , Agua de Mar
18.
Sci Total Environ ; 926: 171746, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521276

RESUMEN

Understanding the diversity and functions of hydrocarbon-degrading microorganisms in marine environments is crucial for both advancing knowledge of biogeochemical processes and improving bioremediation methods. In this study, we leveraged nearly 20,000 metagenome-assembled genomes (MAGs), recovered from a wide array of marine samples across the global oceans, to map the diversity of aerobic hydrocarbon-degrading microorganisms. A broad bacterial diversity was uncovered, with a notable preference for degrading aliphatic hydrocarbons over aromatic ones, primarily within Proteobacteria and Actinobacteriota. Three types of broad-spectrum hydrocarbon-degrading bacteria were identified for their ability to degrade various hydrocarbons and possession of multiple copies of hydrocarbon biodegradation genes. These bacteria demonstrate extensive metabolic versatility, aiding their survival and adaptability in diverse environmental conditions. Evidence of gene duplication and horizontal gene transfer in these microbes suggested a potential enhancement in the diversity of hydrocarbon-degrading bacteria. Positive correlations were observed between the abundances of hydrocarbon-degrading genes and environmental parameters such as temperature (-5 to 35 °C) and salinity (20 to 42 PSU). Overall, our findings offer valuable insights into marine hydrocarbon-degrading microorganisms and suggest considerations for selecting microbial strains for oil pollution remediation.


Asunto(s)
Metagenoma , Petróleo , Hidrocarburos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Océanos y Mares , Petróleo/metabolismo
19.
Sci Total Environ ; 926: 171971, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38547992

RESUMEN

Phototrophic protists are a fundamental component of the world's oceans by serving as the primary source of energy, oxygen, and organic nutrients for the entire ecosystem. Due to the high thermal seasonality of their habitat, temperate protists could harbour many well-adapted species that tolerate ocean warming. However, these species may not sustain ecosystem functions equally well. To address these uncertainties, we conducted a 30-day mesocosm experiment to investigate how moderate (12 °C) and substantial (18 °C) warming compared to ambient conditions (6 °C) affect the composition (18S rRNA metabarcoding) and ecosystem functions (biomass, gross oxygen productivity, nutritional quality - C:N and C:P ratio) of a North Sea spring bloom community. Our results revealed warming-driven shifts in dominant protist groups, with haptophytes thriving at 12 °C and diatoms at 18 °C. Species responses primarily depended on the species' thermal traits, with indirect temperature effects on grazing being less relevant and phosphorus acting as a critical modulator. The species Phaeocystis globosa showed highest biomass on low phosphate concentrations and relatively increased in some replicates of both warming treatments. In line with this, the C:P ratio varied more with the presence of P. globosa than with temperature. Examining further ecosystem responses under warming, our study revealed lowered gross oxygen productivity but increased biomass accumulation whereas the C:N ratio remained unaltered. Although North Sea species exhibited resilience to elevated temperatures, a diminished functional similarity and heightened compositional variability indicate potential ecosystem repercussions for higher trophic levels. In conclusion, our research stresses the multifaceted nature of temperature effects on protist communities, emphasising the need for a holistic understanding that encompasses trait-based responses, indirect effects, and functional dynamics in the face of exacerbating temperature changes.


Asunto(s)
Ecosistema , Oxígeno , Biomasa , Océanos y Mares , Temperatura , Fitoplancton/fisiología
20.
Sci Total Environ ; 926: 172056, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38552980

RESUMEN

Dissolved oxygen (DO) is an important parameter that affects the biology, physiology, and immunology of aquatic animals. In recent decades, DO levels in the global oceans have sharply decreased, partly due to an increase in atmospheric carbon dioxide, temperature, and anthropogenic nutrient loads. Although there have been many reports on the effects of hypoxia on the survival, growth, behavior, and immunity of bivalves, this information has not been well organized. Therefore, this article provides a comprehensive review of the effects of hypoxia on bivalves. In general, hypoxia negatively impacts the food consumption rate and assimilation efficiency, as well as increasing respiration rates in many bivalves. As a result, it reduces the energy allocation for bivalve growth, shell formation, and reproduction. In severe cases, prolonged exposure to hypoxia can result in mass mortality in bivalves. Moreover, hypoxia also has adverse effects on the immunity and response of bivalves to predators, including decreased burial depths, sensitivity to predators, impairment of byssus production, and negatively impacts on the integrity, strength, and composition of bivalve shells. The tolerance of bivalves to hypoxia largely depends on size and species, with larger bivalves being more susceptible to hypoxia and intertidal species being relatively more tolerant to hypoxia. The information in this article is very useful for elucidating the current research status of hypoxia on bivalves and determining future research directions.


Asunto(s)
Bivalvos , Animales , Océanos y Mares , Hipoxia , Oxígeno , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...