Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153.131
Filtrar
1.
Methods Mol Biol ; 2785: 271-285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427199

RESUMEN

Alzheimer's disease is pathologically featured by the accumulation of amyloid-beta (Aß) plaque and neurofibrillary tangles. Compared to small animal positron emission tomography, optical imaging features nonionizing radiation, low cost, and logistic convenience. Optical detection of Aß deposits is typically implemented by 2D macroscopic imaging and various microscopic techniques assisted with Aß-targeted contrast agents. Here, we introduce fluorescence molecular tomography (FMT), a macroscopic 3D fluorescence imaging technique, convenient for in vivo longitudinal monitoring of the animal brain without the involvement of cranial window opening operation. This chapter aims to provide the protocols for FMT in vivo imaging of Aß deposits in the brain of rodent model of Alzheimer's disease. The materials, stepwise method, notes, limitations of FMT, and emerging opportunities for FMT techniques are presented.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Ratones , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Medios de Contraste , Fluorescencia , Péptidos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Placa Amiloide/diagnóstico por imagen , Ratones Transgénicos , Modelos Animales de Enfermedad
2.
Methods Mol Biol ; 2761: 317-328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427247

RESUMEN

Tau protein in Alzheimer's disease (AD) and tauopathies becomes insoluble due to hyperphosphorylation, conformational alterations, and aggregation. To analyze insoluble tau and pathological tau species, this study employs a methodology that utilizes wild-type and transgenic tau mice (P310S Tau) tissue extraction using 1% Sarkosyl or N-Lauroylsarcosine sodium salt and the radio immunoprecipitation assay (RIPA) buffer. However, the commonly used methods to study the insoluble tau fraction using detergents like Sarkosyl and RIPA require a large amount of homogenate, which can pose challenges when dealing with small tissue samples. Additionally, the study employs immunohistochemistry to visualize and quantify the pathological tau species in the brain tissue of transgenic mice, aiming to identify and analyze pathological tau species such as hyperphosphorylated tau to further our understanding of tauopathies such as Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Animales , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Tauopatías/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Encéfalo/metabolismo
3.
Mol Neurodegener ; 19(1): 22, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454456

RESUMEN

BACKGROUND: Mutations in the ß-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS: We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of ß-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a ß-glucocerebrosidase irreversible inhibitor was used to dissect the impact of ß-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of ß-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which ß-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for ß-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of ß-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS: Here we show that ß-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific ß-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS: Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.


Asunto(s)
Enfermedad de Gaucher , Enfermedad de Parkinson , Animales , Ratones , alfa-Sinucleína/metabolismo , Animales Modificados Genéticamente/metabolismo , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Lípidos , Mutación , Enfermedad de Parkinson/metabolismo
4.
Mol Neurodegener ; 19(1): 23, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462606

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease in the United States (US). Animal models, specifically mouse models have been developed to better elucidate disease mechanisms and test therapeutic strategies for AD. A large portion of effort in the field was focused on developing transgenic (Tg) mouse models through over-expression of genetic mutations associated with familial AD (FAD) patients. Newer generations of mouse models through knock-in (KI)/knock-out (KO) or CRISPR gene editing technologies, have been developed for both familial and sporadic AD risk genes with the hope to more accurately model proteinopathies without over-expression of human AD genes in mouse brains. In this review, we summarized the phenotypes of a few commonly used as well as newly developed mouse models in translational research laboratories including the presence or absence of key pathological features of AD such as amyloid and tau pathology, synaptic and neuronal degeneration as well as cognitive and behavior deficits. In addition, advantages and limitations of these AD mouse models have been elaborated along with discussions of any sex-specific features. More importantly, the omics data from available AD mouse models have been analyzed to categorize molecular signatures of each model reminiscent of human AD brain changes, with the hope to guide future selection of most suitable models for specific research questions to be addressed in the AD field.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Masculino , Femenino , Humanos , Ratones , Animales , Enfermedad de Alzheimer/patología , Proteínas tau/genética , Precursor de Proteína beta-Amiloide/genética , Ratones Transgénicos , Modelos Animales de Enfermedad , Péptidos beta-Amiloides
5.
Mil Med Res ; 11(1): 16, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462603

RESUMEN

BACKGROUND: Episodic memory loss is a prominent clinical manifestation of Alzheimer's disease (AD), which is closely related to tau pathology and hippocampal impairment. Due to the heterogeneity of brain neurons, the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear. Therefore, further investigation is necessary. METHODS: We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis, social behavioural tests, hippocampal electrophysiology, immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR. Additionally, we utilized optogenetics and administered ursolic acid (UA) via oral gavage to examine the effects of these agents on social memory in mice. RESULTS: The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1 (vCA1) under both physiological conditions and AD-like tau pathology. As tau progressively accumulated, vCA1, especially its excitatory and parvalbumin (PV) neurons, were fully filled with mislocated and phosphorylated tau (p-Tau). This finding was not observed for dorsal hippocampal CA1 (dCA1). The overexpression of human tau (hTau) in excitatory and PV neurons mimicked AD-like tau accumulation, significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1. Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory. Notably, 1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB (TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory. CONCLUSION: This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation. Notably, our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones Transgénicos , Proteómica , Hipocampo/metabolismo , Hipocampo/patología , Trastornos de la Memoria/metabolismo
6.
Mol Neurodegener ; 19(1): 24, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468308

RESUMEN

Microglia are highly dynamic cells that play a critical role in tissue homeostasis through the surveillance of brain parenchyma and response to cues associated with damage. Aging and APOE4 genotype are the strongest risk factors for Alzheimer's disease (AD), but how they affect microglial dynamics remains unclear. Using ex vivo confocal microscopy, we analyzed microglial dynamic behaviors in the entorhinal cortex (EC) and hippocampus CA1 of 6-, 12-, and 21-month-old mice APOE3 or APOE4 knock-in mice expressing GFP under the CX3CR1 promoter. To study microglia surveillance, we imaged microglia baseline motility for 20 min and measured the extension and retraction of processes. We found that APOE4 microglia exhibited significantly less brain surveillance (27%) compared to APOE3 microglia in 6-month-old mice; aging exacerbated this deficit. To measure microglia response to damage, we imaged process motility in response to ATP, an injury-associated signal, for 30 min. We found APOE4 microglia extended their processes significantly slower (0.9 µm/min, p < 0.005) than APOE3 microglia (1.1 µm/min) in 6-month-old animals. APOE-associated alterations in microglia motility were observed in 12- and 21-month-old animals, and this effect was exacerbated with aging in APOE4 microglia. We measured protein and mRNA levels of P2RY12, a core microglial receptor required for process movement in response to damage. We found that APOE4 microglia express significantly less P2RY12 receptors compared to APOE3 microglia despite no changes in P2RY12 transcripts. To examine if the effect of APOE4 on the microglial response to ATP also applied to amyloid ß (Aß), we infused locally Hi-Lyte Fluor 555-labeled Aß in acute brain slices of 6-month-old mice and imaged microglia movement for 2 h. APOE4 microglia showed a significantly slower (p < 0.0001) process movement toward the Aß, and less Aß coverage at early time points after Aß injection. To test whether P2RY12 is involved in process movement in response to Aß, we treated acute brain slices with a P2RY12 antagonist before Aß injection; microglial processes no longer migrated towards Aß. These results provide mechanistic insights into the impact of APOE4 genotype and aging in dynamic microglial behaviors prior to gross Aß pathology and could help explain how APOE4 brains are more susceptible to AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Ratones , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Genotipo , Ratones Transgénicos , Microglía/metabolismo
7.
Biotechnol J ; 19(3): e2300307, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38472101

RESUMEN

BACKGROUND: The worldwide growing demand for human insulin for treating diabetes could be supplied by transgenic animals producing insulin in their milk. METHODS AND RESULTS: Pseudo-lentivirus containing the bovine ß-casein promoter and human insulin sequences was used to produce modified adult fibroblasts, and the cells were used for nuclear transfer. Transgenic embryos were transferred to recipient cows, and one pregnancy was produced. Recombinant protein in milk was evaluated using western blotting and mass spectrometry. One transgenic cow was generated, and in milk analysis, two bands were observed in western blotting with a molecular mass corresponding to the proinsulin and insulin. The mass spectrometry analysis showed the presence of human insulin more than proinsulin in the milk, and it identified proteases in the transgenic milk that could convert proinsulin into insulin and insulin-degrading enzyme that could degrade the recombinant protein. CONCLUSION: The methodologies used for generating the transgenic cow allowed the detection of the production of recombinant protein in the milk at low relative expression compared to milk proteins, using mass spectrometry, which was efficient for detecting recombinant protein with low expression in milk. Milk proteases could act on protein processing converting recombinant protein to functional protein. On the other hand, some milk proteases could act in degrading the recombinant protein.


Asunto(s)
Leche , Proinsulina , Femenino , Embarazo , Animales , Bovinos , Humanos , Animales Modificados Genéticamente/metabolismo , Proinsulina/análisis , Proinsulina/metabolismo , Leche/química , Proteínas Recombinantes/metabolismo , Insulina/análisis , Péptido Hidrolasas/metabolismo
8.
Signal Transduct Target Ther ; 9(1): 66, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472195

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and the development of non-alcoholic steatohepatitis (NASH) might cause irreversible hepatic damage. Hyperlipidemia (HLP) is the leading risk factor for NAFLD. This study aims to illuminate the causative contributor and potential mechanism of Kallistatin (KAL) mediating HLP to NAFLD. 221 healthy control and 253 HLP subjects, 62 healthy control and 44 NAFLD subjects were enrolled. The plasma KAL was significantly elevated in HLP subjects, especially in hypertriglyceridemia (HTG) subjects, and positively correlated with liver injury. Further, KAL levels of NAFLD patients were significantly up-regulated. KAL transgenic mice induced hepatic steatosis, inflammation, and fibrosis with time and accelerated inflammation development in high-fat diet (HFD) mice. In contrast, KAL knockout ameliorated steatosis and inflammation in high-fructose diet (HFruD) and methionine and choline-deficient (MCD) diet-induced NAFLD rats. Mechanistically, KAL induced hepatic steatosis and NASH by down-regulating adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) by LRP6/Gɑs/PKA/GSK3ß pathway through down-regulating peroxisome proliferator-activated receptor γ (PPARγ) and up-regulating kruppel-like factor four (KLF4), respectively. CGI-58 is bound to NF-κB p65 in the cytoplasm, and diminishing CGI-58 facilitated p65 nuclear translocation and TNFα induction. Meanwhile, hepatic CGI-58-overexpress reverses NASH in KAL transgenic mice. Further, free fatty acids up-regulated KAL against thyroid hormone in hepatocytes. Moreover, Fenofibrate, one triglyceride-lowering drug, could reverse hepatic steatosis by down-regulating KAL. These results demonstrate that elevated KAL plays a crucial role in the development of HLP to NAFLD and may be served as a potential preventive and therapeutic target.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Serpinas , Humanos , Ratones , Ratas , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Inflamación/metabolismo , Ratones Transgénicos
9.
Acta Neuropathol ; 147(1): 55, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472475

RESUMEN

Inclusions comprised of microtubule-associated protein tau (tau) are implicated in a group of neurodegenerative diseases, collectively known as tauopathies, that include Alzheimer's disease (AD). The spreading of misfolded tau "seeds" along neuronal networks is thought to play a crucial role in the progression of tau pathology. Consequently, restricting the release or uptake of tau seeds may inhibit the spread of tau pathology and potentially halt the advancement of the disease. Previous studies have demonstrated that the Mammalian Suppressor of Tauopathy 2 (MSUT2), an RNA binding protein, modulates tau pathogenesis in a transgenic mouse model. In this study, we investigated the impact of MSUT2 on tau pathogenesis using tau seeding models. Our findings indicate that the loss of MSUT2 mitigates human tau seed-induced pathology in neuron cultures and mouse models. In addition, MSUT2 regulates many gene transcripts, including the Adenosine Receptor 1 (A1AR), and we show that down regulation or inhibition of A1AR modulates the activity of the "ArfGAP with SH3 Domain, Ankyrin Repeat, and PH Domain 1 protein" (ASAP1), thereby influencing the internalization of pathogenic tau seeds into neurons resulting in reduction of tau pathology.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Humanos , Animales , Encéfalo/patología , Proteínas tau/metabolismo , Tauopatías/patología , Enfermedad de Alzheimer/patología , Neuronas/patología , Ratones Transgénicos , Mamíferos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
10.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473822

RESUMEN

Several genetic variants that affect microglia function have been identified as risk factors for Alzheimer's Disease (AD), supporting the importance of this cell type in disease progression. However, the effect of autosomal dominant mutations in the amyloid precursor protein (APP) or the presenilin (PSEN1/2) genes has not been addressed in microglia in vivo. We xenotransplanted human microglia derived from non-carriers and carriers of autosomal dominant AD (ADAD)-causing mutations in the brain of hCSF1 WT or 5XFAD mice. We observed that ADAD mutations in microglia are not sufficient to trigger amyloid pathology in WT mice. In 5XFAD mice, we observed a non-statistically significant increase in amyloid plaque volume and number of dystrophic neurites, coupled with a reduction in plaque-associated microglia in the brain of mice xenotransplanted with ADAD human microglia compared to mice xenotransplanted with non-ADAD microglia. In addition, we observed a non-statistically significant impairment in working and contextual memory in 5XFAD mice xenotransplanted with ADAD microglia compared to those xenotransplanted with non-ADAD-carrier microglia. We conclude that, although not sufficient to initiate amyloid pathology in the healthy brain, mutations in APP and PSEN1 in human microglia might cause mild changes in pathological and cognitive outcomes in 5XFAD mice in a manner consistent with increased AD risk.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Animales , Ratones , Microglía , Proteínas Amiloidogénicas , Precursor de Proteína beta-Amiloide , Mutación , Placa Amiloide , Presenilina-1 , Péptidos beta-Amiloides , Ratones Transgénicos , Modelos Animales de Enfermedad
11.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474228

RESUMEN

For at least two reasons, the current transgenic animal models of Alzheimer's disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of the AD pathology. Second, they respond spectacularly well to drugs that are completely ineffective in the treatment of symptomatic AD. These observations indicate that both the transgenic animal models and the drugs faithfully reflect the theory that guided the design and development of both, the amyloid cascade hypothesis (ACH), and that both are inadequate because their underlying theory is. This conclusion necessitated the formulation of a new, all-encompassing theory of conventional AD-the ACH2.0. The two principal attributes of the ACH2.0 are the following. One, in conventional AD, the agent that causes the disease and drives its pathology is the intraneuronal amyloid-ß (iAß) produced in two distinctly different pathways. Two, following the commencement of AD, the bulk of Aß is generated independently of Aß protein precursor (AßPP) and is retained inside the neuron as iAß. Within the framework of the ACH2.0, AßPP-derived iAß accumulates physiologically in a lifelong process. It cannot reach levels required to support the progression of AD; it does, however, cause the disease. Indeed, conventional AD occurs if and when the levels of AßPP-derived iAß cross the critical threshold, elicit the neuronal integrated stress response (ISR), and trigger the activation of the AßPP-independent iAß generation pathway; the disease commences only when this pathway is operational. The iAß produced in this pathway reaches levels sufficient to drive the AD pathology; it also propagates its own production and thus sustains the activity of the pathway and perpetuates its operation. The present study analyzes the reason underlying the evident inadequacy of the current transgenic animal models of AD. It concludes that they model, in fact, not Alzheimer's disease but rather the effects of the neuronal ISR sustained by AßPP-derived iAß, that this is due to the lack of the operational AßPP-independent iAß production pathway, and that this mechanism must be incorporated into any successful AD model faithfully emulating the disease. The study dissects the plausible molecular mechanisms of the AßPP-independent iAß production and the pathways leading to their activation, and introduces the concept of conventional versus unconventional Alzheimer's disease. It also proposes the path forward, posits the principles of design of productive transgenic animal models of the disease, and describes the molecular details of their construction.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad
12.
Sci Rep ; 14(1): 6085, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480808

RESUMEN

Axonal terminals of the small ventral lateral neurons (sLNvs), the circadian clock neurons of Drosophila, show daily changes in their arborization complexity, with many branches in the morning and their shrinkage during the night. This complex phenomenon is precisely regulated by several mechanisms. In the present study we describe that one of them is autophagy, a self-degradative process, also involved in changes of cell membrane size and shape. Our results showed that autophagosome formation and processing in PDF-expressing neurons (both sLNv and lLNv) are rhythmic and they have different patterns in the cell bodies and terminals. These rhythmic changes in the autophagy activity seem to be important for neuronal plasticity. We found that autophagosome cargos are different during the day and night, and more proteins involved in membrane remodeling are present in autophagosomes in the morning. In addition, we described for the first time that Atg8-positive vesicles are also present outside the sLNv terminals, which suggests that secretory autophagy might be involved in regulating the clock signaling network. Our data indicate that rhythmic autophagy in clock neurons affect the pacemaker function, through remodeling of terminal membrane and secretion of specific proteins from sLNvs.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Animales , Drosophila melanogaster/metabolismo , Animales Modificados Genéticamente/metabolismo , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/fisiología , Drosophila/metabolismo , Neuronas/metabolismo , Autofagia
13.
Elife ; 122024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483314

RESUMEN

Mammals harbor a limited number of sound-receptor hair cells (HCs) that cannot be regenerated after damage. Thus, investigating the underlying molecular mechanisms that maintain HC survival is crucial for preventing hearing impairment. Intriguingly, Pou4f3-/- or Gfi1-/- HCs form initially but then rapidly degenerate, whereas Rbm24-/- HCs degenerate considerably later. However, the transcriptional cascades involving Pou4f3, Gfi1, and Rbm24 remain undescribed. Here, we demonstrate that Rbm24 expression is completely repressed in Pou4f3-/- HCs but unaltered in Gfi1-/- HCs, and further that the expression of both POU4F3 and GFI1 is intact in Rbm24-/- HCs. Moreover, by using in vivo mouse transgenic reporter assays, we identify three Rbm24 enhancers to which POU4F3 binds. Lastly, through in vivo genetic testing of whether Rbm24 restoration alleviates the degeneration of Pou4f3-/- HCs, we show that ectopic Rbm24 alone cannot prevent Pou4f3-/- HCs from degenerating. Collectively, our findings provide new molecular and genetic insights into how HC survival is regulated.


Asunto(s)
Terapia Genética , Factores de Transcripción , Animales , Ratones , Animales Modificados Genéticamente , Factores de Transcripción/genética , Células Ciliadas Auditivas , Sonido , Mamíferos , Proteínas de Homeodominio , Factor de Transcripción Brn-3C/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ARN
14.
Sci Transl Med ; 16(738): eadg3665, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478631

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the death of upper (UMN) and lower motor neurons (LMN) in the motor cortex, brainstem, and spinal cord. Despite decades of research, ALS remains incurable, challenging to diagnose, and of extremely rapid progression. A unifying feature of sporadic and familial forms of ALS is cortical hyperexcitability, which precedes symptom onset, negatively correlates with survival, and is sufficient to trigger neurodegeneration in rodents. Using electrocorticography in the Sod1G86R and FusΔNLS/+ ALS mouse models and standard electroencephalography recordings in patients with sporadic ALS, we demonstrate a deficit in theta-gamma phase-amplitude coupling (PAC) in ALS. In mice, PAC deficits started before symptom onset, and in patients, PAC deficits correlated with the rate of disease progression. Using mass spectrometry analyses of CNS neuropeptides, we identified a presymptomatic reduction of noradrenaline (NA) in the motor cortex of ALS mouse models, further validated by in vivo two-photon imaging in behaving SOD1G93A and FusΔNLS/+ mice, that revealed pronounced reduction of locomotion-associated NA release. NA deficits were also detected in postmortem tissues from patients with ALS, along with transcriptomic alterations of noradrenergic signaling pathways. Pharmacological ablation of noradrenergic neurons with DSP-4 reduced theta-gamma PAC in wild-type mice and administration of a synthetic precursor of NA augmented theta-gamma PAC in ALS mice. Our findings suggest theta-gamma PAC as means to assess and monitor cortical dysfunction in ALS and warrant further investigation of the NA system as a potential therapeutic target.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades del Sistema Nervioso Autónomo , Dopamina beta-Hidroxilasa/deficiencia , Enfermedades Neurodegenerativas , Norepinefrina/deficiencia , Humanos , Ratones , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Médula Espinal/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Superóxido Dismutasa/metabolismo
15.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473814

RESUMEN

Alzheimer's disease (AD) stands as the most prevalent neurodegenerative disorder, characterized by a multitude of pathological manifestations, prominently marked by the aggregation of amyloid beta. Recent investigations have revealed a compelling association between excessive adiposity and glial activation, further correlating with cognitive impairments. Additionally, alterations in levels of insulin-like growth factor 1 (IGF-1) have been reported in individuals with metabolic conditions accompanied by memory dysfunction. Hence, our research endeavors to comprehensively explore the impact of IGF-1 on the hippocampus and adipose tissue in the context of Alzheimer's disease. To address this, we have conducted an in-depth analysis utilizing APP/PS2 transgenic mice, recognized as a well-established mouse model for Alzheimer's disease. Upon administering IGF-1 injections to the APP/PS2 mice, we observed notable alterations in their behavioral patterns, prompting us to undertake a comprehensive transcriptomic analysis of both the hippocampal and adipose tissues. Our data unveiled significant modifications in the functional profiles of these tissues. Specifically, in the hippocampus, we identified changes associated with synaptic activity and neuroinflammation. Concurrently, the adipose tissue displayed shifts in processes related to fat browning and cell death signaling. In addition to these findings, our analysis enabled the identification of a collection of long non-coding RNAs and circular RNAs that exhibited significant changes in expression subsequent to the administration of IGF-1 injections. Furthermore, we endeavored to predict the potential roles of these identified RNA molecules within the context of our study. In summary, our study offers valuable transcriptome data for hippocampal and adipose tissues within an Alzheimer's disease model and posits a significant role for IGF-1 within both the hippocampus and adipose tissue.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Péptidos beta-Amiloides/metabolismo , Transcriptoma , Hipocampo/metabolismo , Ratones Transgénicos , Perfilación de la Expresión Génica , Tejido Adiposo Blanco/metabolismo
16.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473843

RESUMEN

Gadd45 genes have been implicated in survival mechanisms, including apoptosis, autophagy, cell cycle arrest, and DNA repair, which are processes related to aging and life span. Here, we analyzed if the deletion of Gadd45a activates pathways involved in neurodegenerative disorders such as Alzheimer's Disease (AD). This study used wild-type (WT) and Gadd45a knockout (Gadd45a-/-) mice to evaluate AD progression. Behavioral tests showed that Gadd45a-/- mice presented lower working and spatial memory, pointing out an apparent cognitive impairment compared with WT animals, accompanied by an increase in Tau hyperphosphorylation and the levels of kinases involved in its phosphorylation in the hippocampus. Moreover, Gadd45a-/- animals significantly increased the brain's pro-inflammatory cytokines and modified autophagy markers. Notably, neurotrophins and the dendritic spine length of the neurons were reduced in Gadd45a-/- mice, which could contribute to the cognitive alterations observed in these animals. Overall, these findings demonstrate that the lack of the Gadd45a gene activates several pathways that exacerbate AD pathology, suggesting that promoting this protein's expression or function might be a promising therapeutic strategy to slow down AD progression.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Proteínas tau/metabolismo , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Cognición , Modelos Animales de Enfermedad
17.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474051

RESUMEN

Alzheimer's disease (AD), the leading cause of dementia, presents a significant global health challenge with no known cure to date. Central to our understanding of AD pathogenesis is the ß-amyloid cascade hypothesis, which underlies drug research and discovery efforts. Despite extensive studies, no animal models of AD have completely validated this hypothesis. Effective AD models are essential for accurately replicating key pathological features of the disease, notably the formation of ß-amyloid plaques and neurofibrillary tangles. These pathological markers are primarily driven by mutations in the amyloid precursor protein (APP) and presenilin 1 (PS1) genes in familial AD (FAD) and by tau protein mutations for the tangle pathology. Transgenic mice models have been instrumental in AD research, heavily relying on the overexpression of mutated APP genes to simulate disease conditions. However, these models do not entirely replicate the human condition of AD. This review aims to provide a comprehensive evaluation of the historical and ongoing research efforts in AD, particularly through the use of transgenic mice models. It is focused on the benefits gathered from these transgenic mice models in understanding ß-amyloid toxicity and the broader biological underpinnings of AD. Additionally, the review critically assesses the application of these models in the preclinical testing of new therapeutic interventions, highlighting the gap between animal models and human clinical realities. This analysis underscores the need for refinement in AD research methodologies to bridge this gap and enhance the translational value of preclinical studies.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Presenilina-1/genética , Placa Amiloide/metabolismo
18.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474278

RESUMEN

The small GTPase RAS acts as a plasma membrane-anchored intracellular neurotrophin counteracting neuronal degeneration in the brain, but the underlying molecular mechanisms are largely unknown. In transgenic mice expressing constitutively activated V12-Ha-RAS selectively in neurons, proteome analysis uncovered a 70% decrease in voltage-dependent anion channel-1 (VDAC-1) in the cortex and hippocampus. We observed a corresponding reduction in the levels of mRNA splicing variant coding for plasma membrane-targeted VDAC-1 (pl-VDAC-1) while mRNA levels for mitochondrial membrane VDAC-1 (mt-VDAC-1) remained constant. In primary cortical neurons derived from V12-Ha-RAS animals, a decrease in pl-VDAC-1 mRNA levels was observed, accompanied by a concomitant reduction in the ferricyanide reductase activity associated with VDAC-1 protein. Application of MEK inhibitor U0126 to transgenic cortical neurons reconstituted pl-VDAC-1 mRNA to reach wild-type levels. Excitotoxic glutamate-induced cell death was strongly attenuated in transgenic V12-Ha-RAS overexpressing cortical cultures. Consistently, a neuroprotective effect could also be achieved in wild-type cortical cultures by the extracellular application of channel-blocking antibody targeting the N-terminus of VDAC-1. These results may encourage novel therapeutic approaches toward blocking pl-VDAC-1 by monoclonal antibody targeting for complementary treatments in transplantation and neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Canales Aniónicos Dependientes del Voltaje , Ratones , Animales , Canales Aniónicos Dependientes del Voltaje/metabolismo , Neuroprotección , Enfermedades Neurodegenerativas/metabolismo , Proteínas ras/metabolismo , Regulación hacia Abajo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Membrana Celular/metabolismo , Ratones Transgénicos , ARN Mensajero/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
20.
Transl Neurodegener ; 13(1): 13, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438877

RESUMEN

BACKGROUND: Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD). These mutations elevate the LRRK2 kinase activity, making LRRK2 kinase inhibitors an attractive therapeutic. LRRK2 kinase activity has been consistently linked to specific cell signaling pathways, mostly related to organelle trafficking and homeostasis, but its relationship to PD pathogenesis has been more difficult to define. LRRK2-PD patients consistently present with loss of dopaminergic neurons in the substantia nigra but show variable development of Lewy body or tau tangle pathology. Animal models carrying LRRK2 mutations do not develop robust PD-related phenotypes spontaneously, hampering the assessment of the efficacy of LRRK2 inhibitors against disease processes. We hypothesized that mutations in LRRK2 may not be directly related to a single disease pathway, but instead may elevate the susceptibility to multiple disease processes, depending on the disease trigger. To test this hypothesis, we have previously evaluated progression of α-synuclein and tau pathologies following injection of proteopathic seeds. We demonstrated that transgenic mice overexpressing mutant LRRK2 show alterations in the brain-wide progression of pathology, especially at older ages. METHODS: Here, we assess tau pathology progression in relation to long-term LRRK2 kinase inhibition. Wild-type or LRRK2G2019S knock-in mice were injected with tau fibrils and treated with control diet or diet containing LRRK2 kinase inhibitor MLi-2 targeting the IC50 or IC90 of LRRK2 for 3-6 months. Mice were evaluated for tau pathology by brain-wide quantitative pathology in 844 brain regions and subsequent linear diffusion modeling of progression. RESULTS: Consistent with our previous work, we found systemic alterations in the progression of tau pathology in LRRK2G2019S mice, which were most pronounced at 6 months. Importantly, LRRK2 kinase inhibition reversed these effects in LRRK2G2019S mice, but had minimal effect in wild-type mice, suggesting that LRRK2 kinase inhibition is likely to reverse specific disease processes in G2019S mutation carriers. Additional work may be necessary to determine the potential effect in non-carriers. CONCLUSIONS: This work supports a protective role of LRRK2 kinase inhibition in G2019S carriers and provides a rational workflow for systematic evaluation of brain-wide phenotypes in therapeutic development.


Asunto(s)
Encéfalo , Neuronas Dopaminérgicas , Animales , Humanos , Ratones , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Cuerpos de Lewy , Ratones Transgénicos , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...