Your browser doesn't support javascript.

Portal de Pesquisa da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

Damage localization method for plates based on the time reversal of the mode-converted Lamb waves.

Mori, Naoki; Biwa, Shiro; Kusaka, Takayuki.
Ultrasonics; 91: 19-29, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30031966
A damage localization method based on the time reversal focusing of the mode-converted scattered Lamb wave is proposed for plate structures with a non-symmetric defect in the thickness direction. Dual transducers are attached symmetrically on the upper and lower surfaces of the plate to selectively emit and receive the lowest-order symmetric (S0) and antisymmetric (A0) modes. The localization of damage is achieved by the numerical time-reversed (TR) simulation of the mode-converted Lamb wave generated at the defect. To investigate the validity of the proposed method, the signals of the Lamb waves in a plate with a partial-thickness notch are numerically simulated by the three-dimensional elastodynamic finite integration technique (EFIT). When the S0 mode is emitted in the damaged plate, not only the S0 mode is scattered but also the A0 mode is generated due to mode conversion at the notch. Similar mode conversion behavior is confirmed when the A0 mode is emitted. The time reversal of the mode-converted scattered Lamb waves creates focused spots at the damage location without using baseline data for the undamaged plate. The proposed method reduces the magnitude of the artifacts compared to the time reversal of the non-mode-converted Lamb wave, and yields the focused spot whose size is associated with the size of the notch and the half wavelength of the time-reversed wave mode. Furthermore, the proposed method is applied to a plate with a notch-type defect adjacent to an a priori known through-thickness hole, demonstrating the damage localization in a relatively complicated structure.