RESUMO
The 21st century has seen the launch of new space-borne sensors based on LiDAR (light detection and ranging) technology developed in the second half of the 20th century. Nowadays, these sensors offer novel opportunities for mapping terrain and canopy heights and estimating aboveground biomass (AGB) across local to regional scales. This study aims to analyze the scientific impact of these sensors on large-scale forest mapping to retrieve 3D canopy information, monitor forest degradation, estimate AGB, and model key ecosystem variables such as primary productivity and biodiversity. A worldwide bibliometric analysis of this topic was carried out based on up to 412 publications indexed in the Scopus database during the period 2004-2022. The results showed that the number of published documents increased exponentially in the last five years, coinciding with the commissioning of two new LiDAR space missions: Ice, Cloud, and Land Elevation Satellite (ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI). These missions have been providing data since 2018 and 2019, respectively. The journal that demonstrated the highest productivity in this field was "Remote Sensing" and among the leading contributors, the top five countries in terms of publications were the USA, China, the UK, France, and Germany. The upward trajectory in the number of publications categorizes this subject as a highly trending research topic, particularly in the context of improving forest resource management and participating in global climate treaty frameworks that require monitoring and reporting on forest carbon stocks. In this context, the integration of space-borne data, including imagery, SAR, and LiDAR, is anticipated to steer the trajectory of this research in the upcoming years.
RESUMO
Aboveground biomass (AGB) is one of the strategic biophysical variables of interest in vegetation studies. The main objective of this study was to evaluate the Support Vector Machine (SVM) and Partial Least Squares Regression (PLSR) for estimating the AGB of grasslands from field spectrometer data and to find out which data pre-processing approach was the most suitable. The most accurate model to predict the total AGB involved PLSR and the Maximum Band Depth index derived from the continuum removed reflectance in the absorption features between 916-1,120 nm and 1,079-1,297 nm (R2 = 0.939, RMSE = 7.120 g/m2). Regarding the green fraction of the AGB, the Area Over the Minimum index derived from the continuum removed spectra provided the most accurate model overall (R2 = 0.939, RMSE = 3.172 g/m2). Identifying the appropriate absorption features was proved to be crucial to improve the performance of PLSR to estimate the total and green aboveground biomass, by using the indices derived from those spectral regions. Ordinary Least Square Regression could be used as a surrogate for the PLSR approach with the Area Over the Minimum index as the independent variable, although the resulting model would not be as accurate.
Assuntos
Algoritmos , Interpretação Estatística de Dados , Monitoramento Ambiental/métodos , Análise dos Mínimos Quadrados , Poaceae/química , Análise Espectral/métodos , Máquina de Vetores de Suporte , Biomassa , Análise de RegressãoRESUMO
The western conifer seed bug (Leptoglossus occidentalis Heidemann, 1910, Heteroptera: Coreidae) has a significant economic impact due to the reduction in the quality and viability of conifer seed crops; it can feed on up to 40 different species of conifers, showing a clear predilection for Pinus pinea L. in Europe. Its incidence is especially relevant for the pine nut-producing industry, given that the action of this pest insect can reduce the production of pine nuts by up to 25%. As part of ongoing efforts aimed at the design of control strategies for this insect, this work focuses on the characterization (by scanning electron microscopy-energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and gas chromatography-mass spectroscopy, GC-MS) of the compounds released by these insects during oviposition, with emphasis on the adhesive secretion that holds L. occidentalis eggs together. Elemental analysis pointed to the presence of significant amounts of compounds with high nitrogen content. Functional groups identified by infrared spectroscopy were compatible with the presence of chitin, scleroproteins, LNSP-like and gelatin proteins, shellac wax analogs, and policosanol. Regarding the chemical species identified by GC-MS, eggs and glue hydromethanolic extracts shared constituents such as butyl citrate, dibutyl itaconate, tributyl aconitate, oleic acid, oleamide, erucamide, and palmitic acid, while eggs also showed stearic and linoleic acid-related compounds. Knowledge of this composition may allow advances in new strategies to address the problem caused by L. occidentalis.
RESUMO
Drought stress causes a reduction in tree growth and forest productivity, which could be aggravated by climate warming and defoliation due to moth outbreaks. We investigate how European gypsy moth (Lymantria dispar dispar L., Lepidoptera: Erebidae) outbreak and related climate conditions affected growth and wood features in host and non-host tree species in north-western Spain. There, radiata pine (Pinus radiata D. Don) plantations and chestnut (Castanea sativa Mill.) stands were defoliated by the moth larvae, whereas Maritime pine (Pinus pinaster Ait.) was not defoliated. The gypsy moth outbreak peaked in 2012 and 2013, and it was preceded by very warm spring conditions in 2011 and a dry-warm 2011-2012 winter. Using dendrochronology we compared growth responses to climate and defoliation of host species (radiata pine, chestnut) with the non-host species (Maritime pine). We also analyzed wood density derived from X-ray densitometry in defoliated and non-defoliated trees of radiata pine. We aimed to: (i) disentangle the relative effects of defoliation and climate stress on radial growth, and (ii) characterize defoliated trees of radiata pine according to their wood features (ring-width, maximum and minimum density). Radial growth during the outbreak (2012-2013) decreased on average 74% in defoliated (>50% of leaf area removed) trees of radiata pine, 43% in defoliated trees of chestnut, and 4% in non-defoliated trees of Maritime pine. After applying a BACI (Before-After-Control-Impact) type analysis, we concluded that the difference in the pattern of radial growth before and during the defoliation event was more likely due to the differences in climate between these two periods. Radiata pines produced abundant latewood intra-annual density fluctuations in 2006 and 2009 in response to wet summer conditions, suggesting a high climatic responsiveness. Minimum wood density was lower in defoliated than in non-defoliated trees of radiata pine prior to the outbreak, but increased during the outbreak. The pre-outbreak difference in minimum wood density suggests that the trees most affected by the outbreak produced tracheids with wider lumen and were more susceptible to drought stress. Results of this study illustrate (i) that the pattern of radial growth alone may be not a good indicator for reconstructing past defoliation events and (ii) that wood variables are reliable indicators for assessing the susceptibility of radiata pine to defoliation by the gypsy moth.