Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1958): 20211741, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34493082

RESUMO

Loss of Arctic sea ice owing to climate change is predicted to reduce both genetic diversity and gene flow in ice-dependent species, with potentially negative consequences for their long-term viability. Here, we tested for the population-genetic impacts of reduced sea ice cover on the polar bear (Ursus maritimus) sampled across two decades (1995-2016) from the Svalbard Archipelago, Norway, an area that is affected by rapid sea ice loss in the Arctic Barents Sea. We analysed genetic variation at 22 microsatellite loci for 626 polar bears from four sampling areas within the archipelago. Our results revealed a 3-10% loss of genetic diversity across the study period, accompanied by a near 200% increase in genetic differentiation across regions. These effects may best be explained by a decrease in gene flow caused by habitat fragmentation owing to the loss of sea ice coverage, resulting in increased inbreeding of local polar bears within the focal sampling areas in the Svalbard Archipelago. This study illustrates the importance of genetic monitoring for developing adaptive management strategies for polar bears and other ice-dependent species.


Assuntos
Camada de Gelo , Ursidae , Animais , Regiões Árticas , Mudança Climática , Ecossistema , Ursidae/genética
2.
Environ Sci Technol ; 54(18): 11365-11375, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32808525

RESUMO

Being at the food chain apex, polar bears (Ursus maritimus) are highly contaminated with persistent organic pollutants (POPs). Females transfer POPs to their offspring through gestation and lactation; therefore, young cubs present higher POPs concentrations than their mothers. Recent studies suggest that POPs affect the lipid metabolism in female polar bears; however, the mechanisms and impact on their offspring remain unknown. Here, we hypothesized that exposure to POPs differentially alters genome-wide gene transcription in the adipose tissue from mother polar bears and their cubs, highlighting molecular differences in response between adults and young. Adipose tissue biopsies were collected from 13 adult female polar bears and their twin cubs in Svalbard, Norway, in April 2011, 2012, and 2013. Total RNA extracted from biopsies was subjected to next-generation RNA sequencing. Plasma concentrations of summed polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers in mothers ranged from 897 to 13620 ng/g wet weight and were associated with altered adipose tissue gene expression in both mothers and cubs. In mothers, 2502 and 2586 genes in total were positively and negatively, respectively, correlated to POP exposure, whereas in cubs, 2585 positively and 1690 negatively genes. Between mothers and cubs, 743 positively and negatively genes overlapped between mothers and cubs suggesting partially shared molecular responses to ΣPOPs. ΣPOP-associated genes were involved in numerous metabolic pathways in mothers and cubs, indicating that POP exposure alters the energy metabolism, which, in turn, may be linked to metabolic dysfunction.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Ursidae , Tecido Adiposo/química , Animais , Poluentes Ambientais/análise , Feminino , Humanos , Mães , Noruega , Svalbard , Transcriptoma , Ursidae/genética
3.
Environ Sci Technol ; 54(12): 7388-7397, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32410455

RESUMO

Temporal trends of total mercury (THg) were examined in female polar bear (Ursus maritimus) hair (n = 199) from the Barents Sea in 1995-2016. In addition, hair values of stable isotopes (n = 190-197) of carbon (δ13C), sulfur (δ34S), and nitrogen (δ15N) and information on breeding status, body condition, and age were obtained. Stable isotope values of carbon and sulfur reflect dietary source (e.g., marine vs terrestrial) and the nitrogen trophic level. Values for δ13C and δ34S declined by -1.62 and -1.18‰ over the time of the study period, respectively, while values for δ15N showed no trend. Total Hg concentrations were positively related to both δ13C and δ34S. Yearly median THg concentrations ranged from 1.61 to 2.75 µg/g and increased nonlinearly by 0.86 µg/g in total over the study. Correcting THg concentrations for stable isotope values of carbon and sulfur and additionally breeding status and age slightly accelerated the increase in THg concentrations; however, confidence intervals of the raw THg trend and the corrected THg trend had substantial overlap. The rise in THg concentrations in the polar bear food web was possibly related to climate-related re-emissions of previously stored Hg from thawing sea-ice, glaciers, and permafrost.


Assuntos
Mercúrio , Ursidae , Animais , Carbono , Monitoramento Ambiental , Feminino , Mercúrio/análise , Nitrogênio , Enxofre
4.
Environ Sci Technol ; 54(2): 985-995, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31823610

RESUMO

In the Barents Sea, pelagic and coastal polar bears are facing various ecological challenges that may explain the difference in their pollutant levels. We measured polychlorinated biphenyls, organochlorine pesticides, polybrominated diphenyl ethers in fat, and perfluoroalkyl substances in plasma in pelagic and coastal adult female polar bears with similar body condition. We studied polar bear feeding habits with bulk stable isotope ratios of carbon and nitrogen. Nitrogen isotopes of amino acids were used to investigate their trophic position. We studied energy expenditure by estimating field metabolic rate using telemetry data. Annual home range size was determined, and spatial gradients in pollutants were explored using latitude and longitude centroid positions of polar bears. Pollutant levels were measured in harp seals from the Greenland Sea and White Sea-Barents Sea as a proxy for a West-East gradient of pollutants in polar bear prey. We showed that pelagic bears had higher pollutant loads than coastal bears because (1) they feed on a higher proportion of marine and higher trophic level prey, (2) they have higher energy requirements and higher prey consumption, (3) they forage in the marginal ice zones, and (4) they feed on prey located closer to pollutant emission sources/transport pathways.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Focas Verdadeiras , Ursidae , Animais , Regiões Árticas , Feminino , Groenlândia
5.
Biol Lett ; 15(5): 20190070, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31039729

RESUMO

Life-history theory predicts that females' age and size affect the level of maternal investment in current reproduction, balanced against the future reproductive effort, maintenance and survival. Using long-term (30 years) individual data on 193 female polar bears ( Ursus maritimus), we assessed age- and size-specific variation on litter size. Litter size varied with maternal age, younger females had higher chances of losing a cub during their first months of life. Results suggest an improvement in reproductive abilities early in life due to experience with subsequent reproductive senescence. Litter size increased with maternal size, indicating that size may reflect individual quality. We also found an optimum in the probability of having twins, suggesting stabilizing selection on female body size. Heterogeneity was observed among the largest females, suggesting that large size comes at a cost.


Assuntos
Ursidae , Animais , Tamanho Corporal , Feminino , Tamanho da Ninhada de Vivíparos , Idade Materna , Gravidez , Reprodução
6.
Environ Sci Technol ; 53(2): 984-995, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30548071

RESUMO

Temporal trends of persistent organic pollutants (POPs: PCBs, OH-PCBs, p, p'-DDE, HCB, ß-HCH, oxychlordane, BDE-47, and 153) in relation to changes in feeding habits and body condition in adult female polar bears ( Ursus maritimus) from the Barents Sea subpopulation were examined over 20 years (1997-2017). All 306 samples were collected in the spring (April). Both stable isotope values of nitrogen (δ15N) and carbon (δ13C) from red blood cells declined over time, with a steeper trend for δ13C between 2012 and 2017, indicating a decreasing intake of marine and high trophic level prey items. Body condition, based on morphometric measurements, had a nonsignificant decreasing tendency between 1997 and 2005, and increased significantly between 2005 and 2017. Plasma concentrations of BDE-153 and ß-HCH did not significantly change over time, whereas concentrations of Σ4PCB, Σ5OH-PCB, BDE-47, and oxychlordane declined linearly. Concentrations of p, p'-DDE and HCB, however, declined until 2012 and 2009, respectively, and increased thereafter. Changes in feeding habits and body condition did not significantly affect POP trends. The study indicates that changes in diet and body condition were not the primary driver of POPs in polar bears, but were controlled in large part by primary and/or secondary emissions of POPs.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Ursidae , Animais , Monitoramento Ambiental , Feminino , Hábitos
7.
Environ Sci Technol ; 52(5): 3211-3221, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29363970

RESUMO

Variation in space-use is common within mammal populations. In polar bears, Ursus maritimus, some individuals follow the sea ice (offshore bears) whereas others remain nearshore yearlong (coastal bears). We studied pollutant exposure in relation to space-use patterns (offshore vs coastal) in adult female polar bears from the Barents Sea equipped with satellite collars (2000-2014, n = 152). First, we examined the differences in home range (HR) size and position, body condition, and diet proxies (nitrogen and carbon stable isotopes, n = 116) between offshore and coastal space-use. Second, we investigated how HR, space-use, body condition, and diet were related to plasma concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) ( n = 113), perfluoroalkyl substances (PFASs; n = 92), and hydroxylated-PCBs ( n = 109). Offshore females were in better condition and had a more specialized diet than did coastal females. PCBs, OCPs, and hydroxylated-PCB concentrations were not related to space-use strategy, yet PCB concentrations increased with increasing latitude, and hydroxylated-PCB concentrations were positively related to HR size. PFAS concentrations were 30-35% higher in offshore bears compared to coastal bears and also increased eastward. On the basis of the results we conclude that space-use of Barents Sea female polar bears influences their pollutant exposure, in particular plasma concentrations of PFAS.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , Venenos , Bifenilos Policlorados , Ursidae , Animais , Feminino
8.
Environ Res ; 165: 387-399, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29860211

RESUMO

In the present study, blood clinical-chemical parameters (BCCPs) were analysed in 20 female and 18 male Svalbard polar bears (Ursus maritimus) captured in spring 2007. The aim was to study how age, body condition (BC), biometrics, plasma lipid content and geographical location may confound the relationship between persistent organic pollutants (POPs) including PCBs, HCB, chlordanes, DDTs, HCHs, mirex and OH-PCBs and the concentrations of 12 specific BCCPs (hematocrit [HCT], hemoglobin [HB], aspartate aminotransferase [ASAT], alanine aminotransferase [ALAT], γ-glutamyltransferase [GGT], creatine kinase [CK], triglycerides [TG], cholesterol [CHOL], high-density lipoprotein [HDL], creatinine (CREA], urea, potassium (K]), and to investigate if any of these BCCPs may be applied as potential biomarkers for POP exposure in polar bears. Initial PCA and O-PLS modelling showed that age, lipids, BC and geographical location (longitude and latitude) were important parameters explaining BCCPs in females. Following subsequent partial correlation analyses correcting for age and lipids, multiple POPs in females were still significantly correlated with HCT and HDL (all p < 0.05). In males, age, BM, BC and longitude were important parameters explaining BCCPs. Following partial correlation analyses correcting for age, biometrics, lipids and longitude in males, multiple POPs were significantly correlated with HCT, ASAT, GGT and CHOL (all p < 0.05). In conclusion, several confounding parameters has to be taken into account when studying the relations between BCCPs and POPs in polar bears. When correcting for these, in particular HCT may be used as a simple cost-efficient biomarker of POP exposure in polar bears. Furthermore, decreasing HDL concentrations and increasing CHOL concentration with increasing POP concentrations may indicate responses related to increased risk of cardiovascular disease. We therefore suggest to further study POP exposure and lipidome response to increase knowledge of the risk of cardiometabolic syndrome in polar bears.


Assuntos
Poluentes Ambientais/sangue , Ursidae/sangue , Animais , Biomarcadores/sangue , Clordano/sangue , DDT/sangue , Feminino , Masculino , Bifenilos Policlorados/sangue , Svalbard
9.
Glob Chang Biol ; 23(2): 490-502, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250039

RESUMO

The Arctic is warming more rapidly than other region on the planet, and the northern Barents Sea, including the Svalbard Archipelago, is experiencing the fastest temperature increases within the circumpolar Arctic, along with the highest rate of sea ice loss. These physical changes are affecting a broad array of resident Arctic organisms as well as some migrants that occupy the region seasonally. Herein, evidence of climate change impacts on terrestrial and marine wildlife in Svalbard is reviewed, with a focus on bird and mammal species. In the terrestrial ecosystem, increased winter air temperatures and concomitant increases in the frequency of 'rain-on-snow' events are one of the most important facets of climate change with respect to impacts on flora and fauna. Winter rain creates ice that blocks access to food for herbivores and synchronizes the population dynamics of the herbivore-predator guild. In the marine ecosystem, increases in sea temperature and reductions in sea ice are influencing the entire food web. These changes are affecting the foraging and breeding ecology of most marine birds and mammals and are associated with an increase in abundance of several temperate fish, seabird and marine mammal species. Our review indicates that even though a few species are benefiting from a warming climate, most Arctic endemic species in Svalbard are experiencing negative consequences induced by the warming environment. Our review emphasizes the tight relationships between the marine and terrestrial ecosystems in this High Arctic archipelago. Detecting changes in trophic relationships within and between these ecosystems requires long-term (multidecadal) demographic, population- and ecosystem-based monitoring, the results of which are necessary to set appropriate conservation priorities in relation to climate warming.


Assuntos
Aves , Mudança Climática , Ecossistema , Mamíferos , Animais , Regiões Árticas , Mar do Norte , Noruega , Dinâmica Populacional , Svalbard
10.
J Anim Ecol ; 86(5): 1054-1064, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28415134

RESUMO

Climate change is impacting different species at different rates, leading to alterations in biological interactions with ramifications for wider ecosystem functioning. Understanding these alterations can help improve predictive capacity and inform management efforts designed to mitigate against negative impacts. We investigated how the movement and space use patterns of polar bears (Ursus maritimus) in coastal areas in Svalbard, Norway, have been altered by a sudden decline in sea ice that occurred in 2006. We also investigated whether the spatial overlap between polar bears and their traditionally most important prey, ringed seals (Pusa hispida), has been affected by the sea-ice decline, as polar bears are dependent on a sea-ice platform for hunting seals. We attached biotelemetry devices to ringed seals (n = 60, both sexes) and polar bears (n = 67, all females) before (2002-2004) and after (2010-2013) a sudden decline in sea ice in Svalbard. We used linear mixed-effects models to evaluate the association of these species to environmental features and an approach based on Time Spent in Area to investigate changes in spatial overlap between the two species. Following the sea-ice reduction, polar bears spent the same amount of time close to tidal glacier fronts in the spring but less time in these areas during the summer and autumn. However, ringed seals did not alter their association with glacier fronts during summer, leading to a major decrease in spatial overlap values between these species in Svalbard's coastal areas. Polar bears now move greater distances daily and spend more time close to ground-nesting bird colonies, where bear predation can have substantial local effects. Our results indicate that sea-ice declines have impacted the degree of spatial overlap and hence the strength of the predator-prey relationship between polar bears and ringed seals, with consequences for the wider Arctic marine and terrestrial ecosystems. Shifts in ecological interactions are likely to become more widespread in many ecosystems as both predators and prey respond to changing environmental conditions induced by global warming, highlighting the importance of multi-species studies.


Assuntos
Mudança Climática , Focas Verdadeiras , Ursidae , Distribuição Animal , Animais , Regiões Árticas , Feminino , Masculino , Modelos Teóricos , Noruega , Dinâmica Populacional
11.
Environ Sci Technol ; 51(20): 11996-12006, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28918622

RESUMO

We monitored concentrations of per- and polyfluoroalkyl substances (PFASs) in relation to climate-associated changes in feeding habits and food availability in polar bears (Ursus maritimus) and arctic foxes (Vulpes lagopus) (192 plasma and 113 liver samples, respectively) sampled from Svalbard, Norway, during 1997-2014. PFASs concentrations became greater with increasing dietary trophic level, as bears and foxes consumed more marine as opposed to terrestrial food, and as the availability of sea ice habitat increased. Long-chained perfluoroalkyl carboxylates (PFCAs) in arctic foxes decreased with availability of reindeer carcasses. The ∼9-14% yearly decline of C6-8 perfluoroalkyl sulfonates (PFSAs) following the cease in C6-8 PFSA precursor production in 2001 indicates that the peak exposure was mainly a result of atmospheric transport of the volatile precursors. However, the stable PFSA concentrations since 2009-2010 suggest that Svalbard biota is still exposed to ocean-transported PFSAs. Long-chain ocean-transported PFCAs increased 2-4% per year and the increase in C12-14 PFCAs in polar bears tended to level off since ∼2009. Emerging short-chain PFASs showed no temporal changes. Climate-related changes in feeding habits and food availability moderately affected PFAS trends. Our results indicate that PFAS concentrations in polar bears and arctic foxes are mainly affected by emissions.


Assuntos
Poluentes Ambientais , Comportamento Alimentar , Fluorocarbonos/análise , Raposas , Ursidae , Animais , Regiões Árticas , Monitoramento Ambiental , Noruega , Svalbard
12.
Environ Res ; 158: 94-104, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28614731

RESUMO

As apex predators, polar bears (Ursus maritimus) are among the most heavily polluted organisms in the Arctic. In addition to this anthropogenic stressor, climate warming has been shown to negatively affect their body condition, reproductive output and survival. Among potential underlying physiological mechanisms, thyroid hormones (THs), which control thermoregulation, metabolism and reproduction, can be affected by a variety of both natural and anthropogenic factors. While THs have been extensively used as proxies for pollution exposure in mammals, including polar bears, there is a lack of knowledge of their natural variations. In this context, we examined seasonal variations in body condition and circulating TH concentrations in free-ranging female polar bears. Females with variable reproductive status (i.e., solitary, with cubs of the year or with yearlings) were sampled from locations with contrasted sea ice conditions. Furthermore, we studied THs in relation to levels of organo-halogenated contaminants. As predicted, solitary females were in better condition than females caring for offspring, especially in spring. In addition, TH levels were lower in autumn compared to spring, although this seasonal effect was mainly observed in solitary females. Finally, the negative relationships between organochlorine and perfluoroalkyl substances and some THs suggest a possible alteration of homeostasis of THs. Since the latter relationships were only observed during spring, we emphasize the importance of considering the ecological factors when using THs as proxies for pollution exposure. Yet, the combined effects of natural and anthropogenic stressors on THs might impair the ability of polar bears to adapt to ongoing climate changes.


Assuntos
Exposição Ambiental , Poluentes Ambientais/sangue , Hidrocarbonetos Halogenados/sangue , Hormônios Tireóideos/sangue , Ursidae/fisiologia , Animais , Regiões Árticas , Composição Corporal , Monitoramento Ambiental , Jejum , Feminino , Hibernação , Reprodução , Estações do Ano , Svalbard
13.
Environ Res ; 138: 191-201, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25725300

RESUMO

As a top predator in the Arctic food chain, polar bears (Ursus maritimus) are exposed to high levels of persistent organic pollutants (POPs). Because several of these compounds have been reported to alter endocrine pathways, such as the steroidogenesis, potential disruption of the sex steroid synthesis by POPs may cause implications for reproduction by interfering with ovulation, implantation and fertility. Blood samples were collected from 15 female polar bears in Svalbard (Norway) in April 2008. The concentrations of nine circulating steroid hormones; dehydroepiandrosterone (DHEA), androstenedione (AN), testosterone (TS), dihydrotestosterone (DHT), estrone (E1), 17α-estradiol (αE2), 17ß-estradiol (ßE2), pregnenolone (PRE) and progesterone (PRO) were determined. The aim of the study was to investigate associations among circulating levels of specific POP compounds and POP-metabolites (hydroxylated PCBs [OH-PCBs] and hydroxylated PBDEs [OH-PBDEs]), steroid hormones, biological and capture variables in female polar bears. Inverse correlations were found between circulating levels of PRE and AN, and circulating levels of OH-PCBs. There were no significant relationships between the steroid concentrations and other analyzed POPs or the variables capture date and capture location (latitude and longitude), lipid content, condition and body mass. Although statistical associations do not necessarily represent direct cause-effect relationships, the present study indicate that OH-PCBs may affect the circulating levels of AN and PRE in female polar bears and that OH-PCBs thus may interfere with the steroid homeostasis. Increase in PRO and a decrease in AN concentrations suggest that the enzyme CYP17 may be a potential target for OH-PCBs. In combination with natural stressors, ongoing climate change and contaminant exposure, it is possible that OH-PCBs may disturb the reproductive potential of polar bears.


Assuntos
Disruptores Endócrinos/sangue , Exposição Ambiental , Poluentes Ambientais/toxicidade , Hormônios Esteroides Gonadais/sangue , Bifenilos Policlorados/toxicidade , Ursidae/metabolismo , Animais , Monitoramento Ambiental , Poluentes Ambientais/sangue , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Éteres Difenil Halogenados/sangue , Noruega , Praguicidas/sangue , Praguicidas/farmacologia , Praguicidas/toxicidade , Bifenilos Policlorados/sangue , Espectrometria de Massas em Tandem
14.
Proc Natl Acad Sci U S A ; 109(36): E2382-90, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22826254

RESUMO

Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000- to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaska's Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5-10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4-5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment.


Assuntos
Adaptação Biológica/genética , Mudança Climática/história , Evolução Molecular , Genética Populacional , Genoma/genética , Ursidae/genética , Animais , Regiões Árticas , Sequência de Bases , Marcadores Genéticos/genética , História Antiga , Dados de Sequência Molecular , Densidade Demográfica , Dinâmica Populacional , Análise de Sequência de DNA , Especificidade da Espécie
15.
Environ Sci Technol ; 47(9): 4778-86, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23551254

RESUMO

We determined the transthyretin (TTR)-binding activity of blood-accumulating contaminants in blood plasma samples of approximately 4-months-old polar bear (Ursus maritimus) cubs from Svalbard sampled in 1998 and 2008. The TTR-binding activity was measured as thyroxine (T4)-like equivalents (T4-EQMeas). Our findings show that the TTR-binding activity related to contaminant levels was significantly lower (45%) in 2008 than in 1998 (mean ± standard error of mean: 1998, 2265 ± 231 nM; 2008, 1258 ± 170 nM). Although we cannot exclude a potential influence of between-year differences in capture location and cub body mass, our findings most likely reflect reductions of TTR-binding contaminants or their precursors in the arctic environment (e.g., polychlorinated biphenyls [PCBs]). The measured TTR-binding activity correlated positively with the cubs' plasma levels of hydroxylated PCBs (OH-PCBs). No such association was found between TTR-binding activity and the plasma levels of perfluoroalkyl substances (PFASs). The OH-PCBs explained 60 ± 7% and 54 ± 4% of the TTR-binding activity in 1998 and 2008, respectively, and PFASs explained ≤1.2% both years. Still, almost half the TTR-binding activity could not be explained by the contaminants we examined. The considerable levels of TTR-binding contaminants warrant further effect directed analysis (EDA) to identify the contaminants responsible for the unexplained part of the observed TTR-binding activity.


Assuntos
Poluentes Ambientais/metabolismo , Pré-Albumina/metabolismo , Ursidae/sangue , Animais , Sítios de Ligação , Ensaio Radioligante
16.
Environ Sci Technol ; 47(15): 8902-12, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23763488

RESUMO

Compounds with transthyretin (TTR)-binding potency in the blood plasma of polar bear cubs were identified with effect-directed analysis (EDA). This approach contributes to the understanding of the thyroid disrupting exposome of polar bears. The selection of these samples for in-depth EDA was based on the difference between the observed TTR-binding potency on the one hand and the calculated potency (based on known concentrations of TTR-binding compounds and their relative potencies) on the other. A library-based identification was applied to the liquid chromatography-time-of-flight-mass spectrometry (LC-ToF-MS) data by screening for matches between compound lists and the LC-ToF-MS data regarding accurate mass and isotope pattern. Then, isotope cluster analysis (ICA) was applied to the LC-ToF-MS data allowing specific screening for halogen isotope patterns. The presence of linear and branched nonylphenol (NP) was observed for the first time in polar bears. Furthermore, the presence of one di- and two monohydroxylated octachlorinated biphenyls (octaCBs) was revealed in the extracts. Linear and branched NP, 4'-OH-CB201 and 4,4'-OH-CB202 could be successfully confirmed with respect to their retention time in the analytical system. In addition, branched NP, mono- and dihydroxylated-octaCBs showed TTR-binding potencies and could explain another 32 ± 2% of the total measured activities in the extracts.


Assuntos
Disruptores Endócrinos/sangue , Exposição Ambiental , Poluentes Ambientais/sangue , Hormônios Tireóideos/sangue , Animais , Cromatografia Líquida , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Ursidae
17.
Proc Natl Acad Sci U S A ; 107(11): 5053-7, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20194737

RESUMO

The polar bear has become the flagship species in the climate-change discussion. However, little is known about how past climate impacted its evolution and persistence, given an extremely poor fossil record. Although it is undisputed from analyses of mitochondrial (mt) DNA that polar bears constitute a lineage within the genetic diversity of brown bears, timing estimates of their divergence have differed considerably. Using next-generation sequencing technology, we have generated a complete, high-quality mt genome from a stratigraphically validated 130,000- to 110,000-year-old polar bear jawbone. In addition, six mt genomes were generated of extant polar bears from Alaska and brown bears from the Admiralty and Baranof islands of the Alexander Archipelago of southeastern Alaska and Kodiak Island. We show that the phylogenetic position of the ancient polar bear lies almost directly at the branching point between polar bears and brown bears, elucidating a unique morphologically and molecularly documented fossil link between living mammal species. Molecular dating and stable isotope analyses also show that by very early in their evolutionary history, polar bears were already inhabitants of the Artic sea ice and had adapted very rapidly to their current and unique ecology at the top of the Arctic marine food chain. As such, polar bears provide an excellent example of evolutionary opportunism within a widespread mammalian lineage.


Assuntos
Evolução Biológica , Genoma Mitocondrial/genética , Arcada Osseodentária/anatomia & histologia , Ursidae/anatomia & histologia , Ursidae/genética , Animais , Sequência de Bases , Variação Genética , Dados de Sequência Molecular , Filogenia , Fatores de Tempo
18.
Polar Biol ; 45(2): 369-370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35226712

RESUMO

[This corrects the article DOI: 10.1007/s00300-021-02954-w.].

19.
Sci Total Environ ; 822: 153572, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35121036

RESUMO

We examined spatial variation in total mercury (THg) concentrations in 100 hair samples collected between 2008 and 2016 from 87 polar bears (Ursus maritimus) from the Norwegian (Svalbard Archipelago, western Barents Sea) and Russian Arctic (Kara Sea, Laptev Sea, and Chukchi Sea). We used latitude and longitude of home range centroid for the Norwegian bears and capture position for the Russian bears to account for the locality. We additionally examined hair stable isotope values of carbon (δ13C) and nitrogen (δ15N) to investigate feeding habits and their possible effect on THg concentrations. Median THg levels in polar bears from the Norwegian Arctic (1.99 µg g-1 dry weight) and the three Russian Arctic regions (1.33-1.75 µg g-1 dry weight) constituted about 25-50% of levels typically reported for the Greenlandic or North American populations. Total Hg concentrations in the Norwegian bears increased with intake of marine and higher trophic prey, while δ13C and δ15N did not explain variation in THg concentrations in the Russian bears. Total Hg levels were higher in northwest compared to southeast Svalbard. δ13C and δ15N values did not show any spatial pattern in the Norwegian Arctic. Total Hg concentrations adjusted for feeding ecology showed similar spatial trends as the measured concentrations. In contrast, within the Russian Arctic, THg levels were rather uniformly distributed, whereas δ13C values increased towards the east and south. The results indicate that Hg exposure in Norwegian and Russian polar bears is at the lower end of the pan-Arctic spectrum, and its spatial variation in the Norwegian and Russian Arctic is not driven by the feeding ecology of polar bears.


Assuntos
Mercúrio , Ursidae , Animais , Regiões Árticas , Cabelo/química , Mercúrio/análise , Noruega
20.
Environ Pollut ; 315: 120395, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228858

RESUMO

To understand the exposure and potential sources of emerging brominated flame retardants (EBFR) and organophosphate esters (OPEs) in marine wildlife from the Norwegian Arctic, we investigated concentrations of EBFRs in 157 tissue samples from nine species of marine vertebrates and OPEs in 34 samples from three whale species. The samples, collected from a wide range of species with contrasting areal use and diets, included blubber of blue whales, fin whales, humpback whales, white whales, killer whales, walruses and ringed seals and adipose tissue and plasma from polar bears, as well as adipose tissue from glaucous gulls. Tris(2-ethylhexyl) phosphate (TEHP) and tris(2-chloroisopropyl) phosphate (TCIPP) ranged from <0.61 to 164 and < 0.8-41 ng/g lipid weight, respectively, in blue whales and fin whales. All other EBRFs and OPEs were below the detection limit or detected only at low concentration. In addition to the baseline information on the occurrence of EBFRs and OPEs in marine wildlife from the Arctic, we provide an in-depth discussion regarding potential sources of the detected compounds. This information is important for future monitoring and management of EBFRs and OPEs.


Assuntos
Balaenoptera , Retardadores de Chama , Focas Verdadeiras , Ursidae , Animais , Retardadores de Chama/análise , Animais Selvagens , Monitoramento Ambiental , Organofosfatos , Ésteres , Fosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA