Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biophys J ; 116(3): 477-486, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30709620

RESUMO

The plasma membrane of cells has a complex architecture based on the bidimensional liquid-crystalline bilayer arrangement of phospho- and sphingolipids, which in turn embeds several proteins and is connected to the cytoskeleton. Several studies highlight the spatial membrane organization into more ordered (Lo or lipid raft) and more disordered (Ld) domains. We here report on a fluorescent analog of the green fluorescent protein chromophore that, when conjugated to a phospholipid, enables the quantification of the Lo and Ld domains in living cells on account of its large fluorescence lifetime variation in the two phases. The domain composition is straightforwardly obtained by the phasor approach to confocal fluorescence lifetime imaging, a graphical method that does not require global fitting of the fluorescence decay in every spatial position of the sample. Our imaging strategy was applied to recover the domain composition in human oligodendrocytes at rest and under treatment with galactosylsphingosine (psychosine). Exogenous psychosine administration recapitulates many of the molecular fingerprints of a severe neurological disease, globoid cell leukodystrophy, better known as Krabbe disease. We found out that psychosine progressively destabilizes plasma membrane, as witnessed by a shrinking of the Lo fraction. The unchanged levels of galactosyl ceramidase, i.e., the enzyme lacking in Krabbe disease, upon psychosine treatment suggest that psychosine alters the plasma membrane structure by direct physical effect, as also recently demonstrated in model membranes.


Assuntos
Membrana Celular/metabolismo , Leucodistrofia de Células Globoides/patologia , Bicamadas Lipídicas/metabolismo , Animais , Células CHO , Cricetulus , Humanos , Microdomínios da Membrana/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Oligodendroglia/patologia
2.
Biophys J ; 114(9): 2212-2220, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742414

RESUMO

Many intracellular reactions are dependent on the dielectric ("polarity") and viscosity properties of their milieu. Fluorescence imaging offers a convenient strategy to report on such environmental properties. Yet, concomitant and independent monitoring of polarity and viscosity in cells at submicron scale is currently hampered by the lack of fluorescence probes characterized by unmixed responses to both parameters. Here, the peculiar photophysics of a green fluorescent protein chromophore analog is exploited for quantifying and imaging polarity and viscosity independently in living cells. We show that the polarity and viscosity profile around a novel hybrid drug-delivery peptide changes dramatically upon cell internalization via endosomes, shedding light on the spatiotemporal features of the release mechanism. Accordingly, our fluorescent probe opens the way to monitor the environmental effects on several processes relevant to cell biochemistry and nanomedicine.


Assuntos
Corantes Fluorescentes/metabolismo , Animais , Células CHO , Sobrevivência Celular , Cricetulus , Impedância Elétrica , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Fatores de Tempo , Viscosidade
3.
Int J Biol Macromol ; 276(Pt 2): 133812, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032902

RESUMO

The characterization of the structure of ferritin in solution and the arrangement of iron stored in its cavity are intriguing subjects for both cell biology and applied science, since the protein structure, stability, and easiness of production make it an ideal tool for biomedical applications. We characterized the ferritin structure over a wide range of iron loadings by visible light, X-ray, and neutron scattering techniques. We found that the arrangement of iron ions inside the protein cage resulted in a more disposable arrangement at lower loading factors and then in a crystalline structure. At very high iron content the inner core is composed of magnetite more than ferrihydrite, and the shell of the protein is elastically deformed by the iron crystal growth in an ellipsoidal arrangement. The application of an external radiofrequency (RF) magnetic field affected ferritins at low iron loading factors. Notably the RF modified the iron disposition towards a more dispersed arrangement. The structural characterization of the ferritin at different LFs and in presence of magnetic fields provides useful insights into their physiological behaviour and can help in the design and fine-tuning of ferritin-based nanosystems for biotechnological applications.

4.
Anal Bioanal Chem ; 405(19): 6223-33, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23780224

RESUMO

The arsenal of fluorescent probes tailored to functional imaging of cells is rapidly growing and benefits from recent developments in imaging strategies. Here, we present a new molecular rotor, which displays strong absorption in the green region of the spectrum, very little solvatochromism, and strong emission sensitivity to local viscosity. The emission increase is paralleled by an increase in emission lifetime. Owing to its concentration-independent nature, fluorescence lifetime is particularly suitable to image environmental properties, such as viscosity, at the intracellular level. Accordingly, we demonstrate that intracellular viscosity measurements can be efficiently carried out by lifetime imaging with our probe and phasor analysis, an efficient method for measuring lifetime-related properties (e.g., bionalyte concentration or local physicochemical features) in living cells. Notably, we show that it is possible to monitor the partition of our probe into different intracellular regions/organelles and to follow mitochondrial de-energization upon oxidative stress.


Assuntos
Corantes Fluorescentes/química , Espaço Intracelular/química , Microscopia de Fluorescência/instrumentação , Linhagem Celular , Humanos , Cinética , Microscopia de Fluorescência/métodos , Viscosidade
5.
Eur Biophys J ; 40(11): 1205-14, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21879297

RESUMO

The photoswitching behaviour of the green fluorescent protein (GFP) chromophore and its analogs opens up exciting horizons for the engineering and development of molecular devices for high sensitivity in vivo studies. In this work we present the synthesis and photophysical study of four GFP chromophore analogs belonging to butenolide and pyrrolinone classes. These chromophores possess an intriguing photoinduced cis-trans isomerization mechanism. Stereochemical structural assignment was unambiguously performed by 1D Nuclear Overhauser Effect NMR measurements. The spectroscopic properties of both cis and trans isomers were studied, and photoconversion quantum yield for cis-trans isomerization was assessed to be in the 0.1-0.4 range. Finally, the 3J(C,H) coupling constant in the 13C-C=C-H motif was in excellent agreement with theoretical DFT calculations, thus providing a further confirmation of cis-trans photoisomerization of the structurally analog GFP chromophore.


Assuntos
4-Butirolactona/análogos & derivados , Proteínas de Fluorescência Verde/química , Processos Fotoquímicos , Pirróis/química , 4-Butirolactona/química , Cor , Espectroscopia de Ressonância Magnética , Fenômenos Ópticos , Estereoisomerismo
6.
Prog Biophys Mol Biol ; 166: 147-155, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34310985

RESUMO

The altered function of the Hyperpolarization-activated Cyclic-Nucleotide-gated (HCN) ion channels plays an important role in the pathogenesis of epilepsy in humans. In particular, HCN1 missense mutations have been recently identified in patients with different epileptic phenotypes, varying from mild to severe. Their electrophysiological characterization shows that mutated channels can act both with loss-of-function and gain-of-function mechanisms of action, without an evident correlation with the phenotype. In search for a correlation between clinical features and biophysical properties of the mutations, in this work we considered sixteen HCN1 mutations, found in eighteen Early Infantile Epileptic Encephalopathy (EIEE) patients. Statistical analysis did not establish any significant correlation between the clinical parameters and the current properties of the mutant channels. The lack of significance of our results could depend on the small number of mutations analyzed, epilepsy-associated with certainty. With the progressive increase of Next Generation Sequencing in patients with early-onset epilepsy, it is expected that the number of patients with HCN1 mutations will grow steadily. Functional characterization of epilepsy-associated HCN1 mutations remains a fundamental tool for a better understanding of the pathogenetic mechanisms leading to the disease in humans.


Assuntos
Epilepsia , Espasmos Infantis , Epilepsia/genética , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Lactente , Mutação , Canais de Potássio/genética
7.
Langmuir ; 26(22): 16762-70, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20883045

RESUMO

The aggregation of perfluoroctanoate salts in H(2)O is studied by (19)F NMR on solutions of LiPFO, NaPFO, and CsPFO, without and with the addition of two poly(ethylene glycol) (PEG) oligomers of molecular weight 1500 and 3400 Da, respectively, and with the addition of suitable crown ethers. The (19)F chemical shift (cs) trends are monitored, at 25 °C, in a concentration range including the critical micellar concentration (cmc) or, in the presence of PEG, the critical aggregation concentration (cac). The cac values in the samples with PEG are lower than the cmc values of the corresponding samples without PEG; moreover, the (19)F cs trends above the cac and above the polymer saturation concentration reveal and help to explain some peculiarities of the aggregation process of PEG on PFO micelles, which, in the first step, seems to occur while the surfactant concentration in water is still increasing. Also in LiPFO/H(2)O or NaPFO/H(2)O solutions containing 12-crown-4 or 15-crown-5 ethers, suitable to complex Li(+) or Na(+) ions, respectively, the cmc decreases. On the other hand, the micellization process in the presence of crown ethers does not show other peculiarities. The prevailing conformations of the PFO chain are discussed on the basis of quantum-mechanical calculations. The theoretical chemical shifts were computed at the DFT level of theory, taking into account the effects of the environment by means of the IEF-PCM method. The helical structure is the most stable one, but anti conformations are easily accessible, in both the aqueous and fluorinated environment. The comparison between computed and experimental chemical shifts indicates that anti conformations are more important in the micelles than in water and in CsPFO micelles than in LiPFO or NaPFO ones.

8.
Front Microbiol ; 10: 332, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858842

RESUMO

Staphylococcus aureus biofilm plays a major role in implant-associated infections. Here, the susceptibility of biofilm S. aureus to daptomycin, fosfomycin, vancomycin, trimethoprim/sulfamethoxazole, linezolid, and rifampicin was investigated by isothermal microcalorimetry (IMC). Moreover, the persister status of cells isolated from S. aureus biofilm after treatment with vancomycin was also analyzed. S. aureus biofilm was tolerant to all the antibiotics tested [minimum biofilm bactericidal concentration (MBBC) > 256 µg/ml], except to daptomycin [MBBC and minimum biofilm eradicating concentration (MBEC) = 32 µg/ml] and rifampin (MBBC and MBEC = 128 µg/ml). After the treatment of MRSA biofilm with 1024 µg/ml vancomycin, ∼5% cells survived, although metabolically inactive (persisters). Interestingly, IMC revealed that persister bacteria reverted to a normal-growing phenotype when inoculated into fresh medium without antibiotics. A staggered treatment of MRSA biofilm with vancomycin to kill all the metabolically active cells and daptomycin to kill persister cells eradicated the whole bacterial population. These results support the use in the clinical practice of a therapeutic regimen based on the use of two antibiotics to kill persister cells and eradicate MRSA biofilms. IMC represents a suitable technique to characterize in real-time the reversion from persister to metabolically-active cells.

9.
Elife ; 82019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31769408

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control spontaneous electrical activity in heart and brain. Binding of cAMP to the cyclic nucleotide-binding domain (CNBD) facilitates channel opening by relieving a tonic inhibition exerted by the CNBD. Despite high resolution structures of the HCN1 channel in the cAMP bound and unbound states, the structural mechanism coupling ligand binding to channel gating is unknown. Here we show that the recently identified helical HCN-domain (HCND) mechanically couples the CNBD and channel voltage sensing domain (VSD), possibly acting as a sliding crank that converts the planar rotational movement of the CNBD into a rotational upward displacement of the VSD. This mode of operation and its impact on channel gating are confirmed by computational and experimental data showing that disruption of critical contacts between the three domains affects cAMP- and voltage-dependent gating in three HCN isoforms.


Assuntos
AMP Cíclico/química , AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Domínios Proteicos , Sítios de Ligação , Eletrofisiologia , Células HEK293/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Ativação do Canal Iônico , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica , Isoformas de Proteínas , Termodinâmica
10.
Nanoscale ; 10(15): 7147-7154, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29616686

RESUMO

Comparing the photoluminescence (PL) properties of ensembles of nanocrystals like semiconductor quantum dots (QDs) with single particle studies is of increasing interest for many applications of these materials as reporters in bioimaging studies performed under very dilute conditions or even at the single particle level. Particularly relevant is here the PL quantum yield (ΦF), which determines the signal size together with the reporter's molar extinction coefficient and is a direct measure for nanocrystal quality, especially for the inorganic surface passivation shell and its tightness, which can be correlated also with nanocrystal stability and the possible release of heavy metal ions. Exemplarily for red and green emitting CdTe nanocrystals, we present a method for the determination of ΦF of nanoparticle dispersions at ultralow concentration compared to cuvette measurements using fluorescence correlation spectroscopy (FCS), a single molecule method, and compared to molecular dyes with closely matching spectral properties and known ΦF. Our results underline the potential of this approach, provided that material-inherent limitations like ligand- and QD-specific aggregation affecting particle diffusion and QD drawbacks such as their complex and power-dependent blinking behavior are properly considered as shown here.

11.
ACS Chem Biol ; 13(8): 2082-2093, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29878744

RESUMO

Reversibly photoswitchable fluorescent proteins (RSFPs) admirably combine the genetic encoding of fluorescence with the ability to repeatedly toggle between a bright and dark state, adding a new temporal dimension to the fluorescence signal. Accordingly, in recent years RSFPs have paved the way to novel applications in cell imaging that rely on their reversible photoswitching, including many super-resolution techniques such as F-PALM, RESOLFT, and SOFI that provide nanoscale pictures of the living matter. Yet many RSFPs have been engineered by a rational approach only to a limited extent, in the absence of clear structure-property relationships that in most cases make anecdotic the emergence of the photoswitching. We reported [ Bizzarri et al. J. Am Chem Soc. 2010 , 102 , 85 ] how the E222Q replacement is a single photoswitching mutation, since it restores the intrinsic cis-trans photoisomerization properties of the chromophore in otherwise nonswitchable Aequorea proteins of different color and mutation pattern (Q-RSFPs). We here investigate the subtle role of Q222 on the excited-state photophysics of the two simplest Q-RSFPs by a combined experimental and theoretical approach, using their nonswitchable anacestor EGFP as benchmark. Our findings link indissolubly photoswitching and Q222 presence, by a simple yet elegant scenario: largely twisted chromophore structures around the double bond (including hula-twist configurations) are uniquely stabilized by Q222 via H-bonds. Likely, these H-bonds subtly modulate the electronic properties of the chromophore, enabling the conical intersection that connects the excited cis to ground trans chromophore. Thus, Q222 belongs to a restricted family of single mutations that change dramatically the functional phenotype of a protein. The capability to distinguish quantitatively T65S/E222Q EGFP ("WildQ", wQ) from the spectrally identical EGFP by quantitative Optical Lock-In Detection (qOLID) witnesses the relevance of this mutation for cell imaging.


Assuntos
Hidrozoários/química , Proteínas Luminescentes/química , Animais , Células CHO , Cricetulus , Proteínas de Fluorescência Verde/química , Ligação de Hidrogênio , Isomerismo , Luz , Modelos Moleculares , Imagem Óptica , Processos Fotoquímicos
12.
Res Microbiol ; 169(9): 515-521, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29886257

RESUMO

Bacterial biofilms, highly resistant to the conventional antimicrobial therapy, remain an unresolved challenge pressing the medical community to investigate new and alternative strategies to fight chronic implant-associated infections. Recently, strictly lytic bacteriophages have been revalued as powerful agents to kill antibiotic-resistant bacteria even in biofilm. Here, the interaction of T3 bacteriophage and planktonic and biofilm Escherichia coli TG1, respectively, was evaluated using isothermal microcalorimetry. Microcalorimetry is a non-invasive and highly sensitive technique measuring growth-related heat production of microorganisms in real-time. Planktonic and biofilm E. coli TG1 were exposed to different titers of T3 bacteriophage, ranging from 102 to 107 PFU/ml. The incubation of T3 with E. coli TG1 showed a strong inhibition of heat production both in planktonic and biofilm already at lower bacteriophage titers (103 PFU/ml). This method could be used to screen and evaluate the antimicrobial potential of different bacteriophages, alone and in combination with antibiotics in order to improve the treatment success of biofilm-associated infections.


Assuntos
Antibacterianos/farmacologia , Bacteriófago T3/fisiologia , Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Escherichia coli/virologia , Bacteriófago T3/patogenicidade , Calorimetria/métodos , Sistemas Computacionais , Testes de Sensibilidade Microbiana
13.
Microsc Res Tech ; 79(10): 929-937, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27447845

RESUMO

Reversible photoswitching has been proposed as a way to identify molecules that are present in small numbers over a large, non-switching, background. This approach, called optical-lock-in-detection (OLID) requires the deterministic control of the fluorescence of a photochromic emitter through optical modulation between a bright (on) and a dark state (off). OLID yields a high-contrast map where the switching molecules are pinpointed, but the fractional intensities of the emitters are not returned. The present work presents a modified OLID approach (quantitative OLID or qOLID) that yields quantitative information of the switching (fSW ) and non-switching (fNS ) components. After the validation of the method with a sample dataset and image sequence, we apply qOLID to measurements in cells that transiently express the photochromic protein EYQ1. We show that qOLID is efficient in separating the modulated from the non-modulated signal, the latter deriving from background/autofluorescence or fluorophores emitting in the same spectral region. Finally, we apply qOLID to Förster (Fluorescence) Resonance Energy Transfer (FRET) imaging. We here demonstrate that qOLID is able to highlight the distribution of FRET intensity in a sample by using a photochromic donor and a non-photochromic acceptor.

14.
J Phys Chem B ; 119(20): 6144-54, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25902266

RESUMO

Dual fluorescence is an anomalous photophysical phenomenon observed in very few chromophores in which a two-color radiative process occurs that involves two distinct excited electronic states. To date its observation was linked either to electronic rearrangement of an excited fluorophore leading to two conformers with distinct emissive properties, or to a photochemical modification leading to different fluorescent species. In both cases, emission originates from the lowest excited state of the resulting molecular configurations, in line with the so-called Kasha's rule. We report here a combined theoretical and spectroscopic study showing, for the first time, an anti-Kasha dual-emission mechanism, in which simultaneous two-color emission takes place from the first and second excited state of a coumarin derivative. We argue that the observed environmental sensitivity of this peculiar optical response makes the present compound ideally suited for biosensing applications in living cells.


Assuntos
Cumarínicos/análise , Corantes Fluorescentes/análise , Técnicas Biossensoriais , Linhagem Celular , Elétrons , Polarização de Fluorescência , Humanos , Microscopia Confocal , Modelos Moleculares , Conformação Molecular
15.
Chem Commun (Camb) ; 49(17): 1723-5, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23340669

RESUMO

A fluorescent probe structurally similar to the GFP chromophore is demonstrated to report the local static dielectric constant. This probe can be chemically functionalized for selective targeting at the intracellular level.


Assuntos
Benzoatos/química , Furanos/química , Proteínas de Fluorescência Verde/química , Animais , Células CHO , Colesterol/química , Cricetinae , Cricetulus , Corantes Fluorescentes/química , Microscopia Confocal , Eletricidade Estática , Lipossomas Unilamelares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA