Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Res Sq ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38746232

RESUMO

The development of subunit vaccines that mimic the molecular complexity of attenuated vaccines has been limited by the difficulty of intracellular co-delivery of multiple chemically diverse payloads at controllable concentrations. We report on hierarchical hydrogel depots employing simple poly(propylene sulfone) homopolymers to enable ratiometric loading of a protein antigen and four physicochemically distinct adjuvants in a hierarchical manner. The optimized vaccine consisted of immunostimulants either adsorbed to or encapsulated within nanogels, which were capable of noncovalent anchoring to subcutaneous tissues. These 5-component nanogel vaccines demonstrated enhanced humoral and cell-mediated immune responses compared to formulations with standard single adjuvant and antigen pairing. The use of a single simple homopolymer capable of rapid and stable loading and intracellular delivery of diverse molecular cargoes holds promise for facile development and optimization of scalable subunit vaccines and complex therapeutic formulations for a wide range of biomedical applications.

2.
Sci Adv ; 10(30): eadk5509, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39047104

RESUMO

Epitaxial crystallization of complex oxides provides the means to create materials with precisely selected composition, strain, and orientation, thereby controlling their functionalities. Extending this control to nanoscale three-dimensional geometries can be accomplished via a three-dimensional analog of oxide solid-phase epitaxy, lateral epitaxial crystallization. The orientation of crystals within laterally crystallized SrTiO3 systematically changes from the orientation of the SrTiO3 substrate. This evolution occurs as a function of lateral crystallization distance, with a rate of approximately 50° µm-1. The mechanism of the rotation is consistent with a steady-state stress of tens of megapascal over a 100-nanometer scale region near the moving amorphous/crystalline interface arising from the amorphous-crystalline density difference. Second harmonic generation and piezoelectric force microscopy reveal that the laterally crystallized SrTiO3 is noncentrosymmetric and develops a switchable piezoelectric response at room temperature, illustrating the potential to use lateral crystallization to control the functionality of complex oxides.

3.
Cell Rep ; 33(8): 108431, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33238128

RESUMO

Exposure to excessive sound causes noise-induced hearing loss through complex mechanisms and represents a common and unmet neurological condition. We investigate how noise insults affect the cochlea with proteomics and functional assays. Quantitative proteomics reveals that exposure to loud noise causes proteotoxicity. We identify and confirm hundreds of proteins that accumulate, including cytoskeletal proteins, and several nodes of the proteostasis network. Transcriptomic analysis reveals that a subset of the genes encoding these proteins also increases acutely after noise exposure, including numerous proteasome subunits. Global cochlear protein ubiquitylation levels build up after exposure to excess noise, and we map numerous posttranslationally modified lysines residues. Several collagen proteins decrease in abundance, and Col9a1 specifically localizes to pillar cell heads. After two weeks of recovery, the cochlea selectively elevates the abundance of the protein synthesis machinery. We report that overstimulation of the auditory system drives a robust cochlear proteotoxic stress response.


Assuntos
Perda Auditiva Provocada por Ruído/fisiopatologia , Proteostase/genética , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA