Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566151

RESUMO

Diabetes mellitus (DM) is a complicated condition that is accompanied by a plethora of metabolic symptoms, including disturbed serum glucose and lipid profiles. Several herbs are reputed as traditional medicine to improve DM. The current study was designed to explore the chemical composition and possible ameliorative effects of Ocimum forskolei on blood glucose and lipid profile in high-fat diet/streptozotocin-induced diabetic rats and in 3T3-L1 cell lines as a first report of its bioactivity. Histopathological study of pancreatic and adipose tissues was performed in control and treatment groups, along with quantification of glucose and lipid profiles and the assessment of NF-κB, cleaved caspase-3, BAX, and BCL2 markers in rat pancreatic tissue. Glucose uptake, adipogenic markers, DGAT1, CEBP/α, and PPARγ levels were evaluated in the 3T3-L1 cell line. Hesperidin was isolated from total methanol extract (TME). TME and hesperidin significantly controlled the glucose and lipid profile in DM rats. Glibenclamide was used as a positive control. Histopathological assessment showed that TME and hesperidin averted necrosis and infiltration in pancreatic tissues, and led to a substantial improvement in the cellular structure of adipose tissue. TME and hesperidin distinctly diminished the mRNA and protein expression of NF-κB, cleaved caspase-3, and BAX, and increased BCL2 expression (reflecting its protective and antiapoptotic actions). Interestingly, TME and hesperidin reduced glucose uptake and oxidative lipid accumulation in the 3T3-L1 cell line. TME and hesperidin reduced DGAT1, CEBP/α, and PPARγ mRNA and protein expression in 3T3-L1 cells. Moreover, docking studies supported the results via deep interaction of hesperidin with the tested biomarkers. Taken together, the current study demonstrates Ocimum forskolei and hesperidin as possible candidates for treating diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental , Hesperidina , Ocimum basilicum , Ocimum , Células 3T3-L1 , Animais , Biomarcadores/metabolismo , Caspase 3 , Diabetes Mellitus Experimental/metabolismo , Glucose/efeitos adversos , Hesperidina/farmacologia , Lipídeos , Camundongos , NF-kappa B/metabolismo , Ocimum basilicum/metabolismo , PPAR gama/metabolismo , RNA Mensageiro , Ratos , Proteína X Associada a bcl-2
2.
Bioorg Med Chem ; 27(17): 3954-3959, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31324567

RESUMO

Three new cyclic heptapeptides (1-3) together with three known compounds (4-6) were isolated from a solid rice culture of the soil-derived fungus Clonostachys rosea. Fermentation of the fungus on white beans instead of rice afforded a new γ-lactam (7) and a known γ-lactone (8) that were not detected in the former extracts. The structures of the new compounds were elucidated on the basis of 1D and 2D NMR spectra as well as by HRESIMS data. Compounds 1 and 4 exhibited significant cytotoxicity against the L5178Y mouse lymphoma cell line with IC50 values of 4.1 and 0.1 µM, respectively. Compound 4 also displayed cytotoxicity against the A2780 human ovarian cancer cell line with an IC50 value of 3.5 µM. The preliminary structure-activity relationships are discussed.


Assuntos
Antineoplásicos/farmacologia , Gliocladium/química , Peptídeos Cíclicos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fermentação , Gliocladium/metabolismo , Humanos , Camundongos , Estrutura Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Relação Estrutura-Atividade
3.
Planta Med ; 85(6): 503-512, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30699456

RESUMO

A new cyclic pentapeptide, cotteslosin C (1: ), a new aflaquinolone, 22-epi-aflaquinolone B (3: ), and two new anthraquinones (9: and 10: ), along with thirty known compounds (2, 4:  - 8, 11:  - 34: ) were isolated from a co-culture of the sponge-associated fungus Aspergillus versicolor with Bacillus subtilis. The new metabolites were only detected in the co-culture extract, but not when the fungus was grown under axenic conditions. Furthermore, the co-culture extract exhibited an enhanced accumulation of the known constituents versicolorin B (14: ), averufin (16: ), and sterigmatocyctin (19: ) by factors of 1.5, 2.0, and 4.7, respectively, compared to the axenic fungal culture. The structures of the isolated compounds were elucidated on the basis of 1D and 2D NMR spectra and mass spectrometry as well as by comparison with literature data. The absolute configuration of compounds 3, 9: , and 10: was determined by ECD (electronic circular dichroism) analysis aided by TDDFT-ECD (time-dependent density functional theory electronic circular dichroism) calculations. Compounds 15, 18:  - 21: , and 26: exhibited strong to moderate cytotoxic activity against the mouse lymphoma cell line L5178Y, with IC50 values ranging from 2.0 to 21.2 µM, while compounds 14, 16, 31, 32: , and 33: displayed moderate inhibitory activities against several gram-positive bacteria, with MIC values ranging from 12.5 to 50 µM.


Assuntos
Aspergillus/metabolismo , Bacillus subtilis/metabolismo , Animais , Antraquinonas/isolamento & purificação , Antraquinonas/metabolismo , Antraquinonas/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Dicroísmo Circular , Técnicas de Cocultura , Citotoxinas/isolamento & purificação , Citotoxinas/metabolismo , Citotoxinas/farmacologia , Relação Dose-Resposta a Droga , Bactérias Gram-Positivas/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Quinolonas/isolamento & purificação , Quinolonas/metabolismo , Quinolonas/farmacologia
4.
RSC Adv ; 11(28): 17116-17150, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479707

RESUMO

The genus Aspergillus is widely distributed in terrestrial and marine environments. In the marine environment, several Aspergillus species have proved their potential to produce a plethora of secondary metabolites including polyketides, sterols, fatty acids, peptides, alkaloids, terpenoids and miscellaneous compounds, displaying a variety of pharmacological activities such as antimicrobial, cytotoxicity, anti-inflammatory and antioxidant activity. From the beginning of 2015 until December 2020, about 361 secondary metabolites were identified from different marine Aspergillus species. In our review, we highlight secondary metabolites from various marine-derived Aspergillus species reported between January 2015 and December 2020 along with their biological potential and structural aspects whenever applicable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA