Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(8): 5173-5185, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358388

RESUMO

Aqueous redox flow batteries (RFBs) are attractive candidates for low-cost, grid-scale storage of energy from renewable sources. Quinoxaline derivatives represent a promising but underexplored class of charge-storing materials on account of poor chemical stability in prior studies (with capacity fade rates >20%/day). Here, we establish that 2,3-dimethylquinoxaline-6-carboxylic acid (DMeQUIC) is vulnerable to tautomerization in its reduced form under alkaline conditions. We obtain kinetic rate constants for tautomerization by applying Bayesian inference to ultraviolet-visible spectroscopic data from operating flow cells and show that these rate constants quantitatively account for capacity fade measured in cycled cells. We use density functional theory (DFT) modeling to identify structural and chemical predictors of tautomerization resistance and demonstrate that they qualitatively explain stability trends for several commercially available and synthesized derivatives. Among these, quinoxaline-2-carboxylic acid shows a dramatic increase in stability over DMeQUIC and does not exhibit capacity fade in mixed symmetric cell cycling. The molecular design principles identified in this work set the stage for further development of quinoxalines in practical, aqueous organic RFBs.

2.
Small ; 20(23): e2305789, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38482934

RESUMO

Designing highly active and robust catalysts for the oxygen evolution reaction is key to improving the overall efficiency of the water splitting reaction. It has been previously demonstrated that evaporation induced self-assembly (EISA) can be used to synthesize highly porous and high surface area cerate-based fluorite nanocatalysts, and that substitution of Ce with 50% rare earth (RE) cations significantly improves electrocatalyst activity. Herein, the defect structure of the best performing nanocatalyst in the series are further explored, Nd2Ce2O7, with a combination of neutron diffraction and neutron pair distribution function analysis. It is found that Nd3 + cation substitution for Ce in the CeO2 fluorite lattice introduces higher levels of oxygen Frenkel defects and induces a partially reduced RE1.5Ce1.5O5 + x phase with oxygen vacancy ordering. Significantly, it is demonstrated that the concentration of oxygen Frenkel defects and improved electrocatalytic activity can be further enhanced by increasing the compositional complexity (number of RE cations involved) in the substitution. The resulting novel compositionally-complex fluorite- (La0.2Pr0.2Nd0.2Tb0.2Dy0.2)2Ce2O7 is shown to display a low OER overpotential of 210 mV at a current density of 10 mAcm-2 in 1M KOH, and excellent cycling stability. It is suggested that increasing the compositional complexity of fluorite nanocatalysts expands the ability to tailor catalyst design.

3.
BMC Infect Dis ; 24(1): 462, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698313

RESUMO

BACKGROUND: Neglected tropical diseases (NTDs) such as leprosy, lymphatic filariasis (LF), schistosomiasis and onchocerciasis are endemic in several African countries. These diseases can lead to severe pain and permanent disability, which can negatively affect the economic productivity of the affected person(s), and hence resulting into low economic performance at the macrolevel. Nonetheless, empirical evidence of the effects of these NTDs on economic performance at the macrolevel is sparse. This study therefore investigates the effects of the above-mentioned NTDs on economic performance at the macrolevel in Africa. METHODS: The study employs a panel design with data comprising 24 to 45 African countries depending on the NTD in question, over the period, 2002 to 2019. Gross domestic product (GDP) is used as the proxy for economic performance (Dependent variable) and the prevalence of the above-mentioned NTDs are used as the main independent variables. The random effects (RE), fixed effects (FE) and the instrumental variable fixed effects (IVFE) panel data regressions are used as estimation techniques. RESULTS: We find that, an increase in the prevalence of the selected NTDs is associated with a fall in economic performance in the selected African countries, irrespective of the estimation technique used. Specifically, using the IVFE regression estimates, we find that a percentage increase in the prevalence of leprosy, LF, schistosomiasis and onchocerciasis is associated with a reduction in economic performance by 0.43%, 0.24%, 0.28% and 0.36% respectively, at either 1% or 5% level of significance. CONCLUSION: The findings highlight the need to increase attention and bolster integrated efforts or measures towards tackling these diseases in order to curb their deleterious effects on economic performance. Such measures can include effective mass drug administration (MDA), enhancing access to basic drinking water and sanitation among others.


Assuntos
Doenças Negligenciadas , Medicina Tropical , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/economia , Humanos , África/epidemiologia , Medicina Tropical/economia , Esquistossomose/epidemiologia , Esquistossomose/economia , Hanseníase/epidemiologia , Hanseníase/economia , Prevalência , Oncocercose/epidemiologia , Oncocercose/economia , Produto Interno Bruto , Filariose Linfática/epidemiologia , Filariose Linfática/economia
4.
J Sep Sci ; 47(1): e2300678, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994215

RESUMO

Hippomarathrum scabrum L. is an endemic medicinal plant in Turkey; however, there have been few studies investigating the phytochemistry and biological properties of these plants has not been investigated. The aim of this work is to determine the chemical composition of different extracts (extracts obtained by using supercritical carbon dioxide extraction, accelerated solvent extraction, homogenizer-assisted extraction, microwave-assisted extraction, and ultrasound-assisted extraction from Hippomarathrum scabrum L., and evaluate their biological properties. The analysis revealed that 5-O-caffeoylquinic acid, rutin, and isorhamnetin 3-O-rutinoside were the main bioactive compounds. The extract obtained by accelerated extraction contains the highest concentration of 5-O-Caffeoylquinic acid (7616.74 ± 63.09 mg/kg dry extract) followed by the extract obtained by homogenizer-assisted extraction (6682.53 ± 13.04 mg/kg dry extract). In antioxidant tests, all extracts expressed significant antioxidant activity. Also, cytotoxic and anticancer effects of these plant extracts were detected in the human prostate cancer cell line. Intrinsic apoptotic genes were up-regulated and anti-apoptotic genes were down-regulated in human prostate cancer cells after inhibition concentration dose treatment. The findings are promising, and suggest the use of these plant extracts could be used as natural sources with different biological activities, as well as anticancer agents.


Assuntos
Antioxidantes , Ácido Clorogênico/análogos & derivados , Neoplasias da Próstata , Ácido Quínico/análogos & derivados , Masculino , Humanos , Antioxidantes/análise , Extratos Vegetais/química , Componentes Aéreos da Planta/química
5.
Arch Pharm (Weinheim) ; 357(2): e2300528, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37974540

RESUMO

The genus Stachys L., one of the largest genera of the Lamiaceae family, is highly represented in Turkey. This study was conducted to determine the bio-pharmaceutical potential and phenolic contents of six different extracts from aerial parts of Stachys tundjeliensis. The obtained results showed that the ethanol extract exhibited the highest antioxidant activity in the antioxidant assays. Meanwhile, the ethanol extract displayed strong inhibitory activity against α-tyrosinase, the dichloromethane extract exhibited potent inhibition against butyrylcholinesterase, and the n-hexane extract against α-amylase. Based on ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry analysis, more than 90 secondary metabolites, including hydroxybenzoic acid, hydroxycinnamic acid, and their glycosides, acylquinic acids, phenylethanoid glycosides, and various flavonoids were identified or tentatively annotated in the studied S. tundjeliensis extracts. It was observed that the application of S. tundjeliensis eliminated H2 O2 -induced oxidative stress. It was determined that protein levels of phospho-nuclear factor kappa B (NF-κB), receptor for advanced glycation endproducts, and activator protein-1, which are activated in the nucleus, decreased, and the synthesis of matrix metalloproteinase (MMP)-2 and MMP-9 also decreased to basal levels. Overall, these findings suggest that S. tundjeliensis contains diverse bioactive compounds for the development of nutraceuticals or functional foods with potent biological properties.


Assuntos
Stachys , Stachys/química , Extratos Vegetais/química , Butirilcolinesterase , Receptor para Produtos Finais de Glicação Avançada , Relação Estrutura-Atividade , Antioxidantes/farmacologia , Antioxidantes/química , Glicosídeos , Etanol
6.
Arch Pharm (Weinheim) ; : e2400194, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877616

RESUMO

Tanacetum nitens ( Boiss. & Noë)  Grierson is an aromatic perennial herb used in Turkish traditional medicine to treat headache, fever, and skin diseases. This study aimed to investigate the chemical composition, antioxidant, enzyme inhibition, and cytotoxic properties of T. nitens aerial parts. Organic solvent extracts were prepared by sequential maceration in hexane, dichloromethane, ethyl acetate, and methanol while aqueous extracts were obtained by maceration or infusion. Nuclear magnetic resonance (NMR) and LC-DAD-MS analysis allowed the identification and quantification of different phytoconstituents including parthenolide, tanacetol B, tatridin B, quinic acid derivatives, ß-sitosterol, and glycoside derivatives of quercetin and luteolin. The type and amount of these phytochemicals recovered by each solvent were variable and significant enough to impact the biological activities of the plant. Methanolic and aqueous extracts displayed the highest scavenging and ions-reducing properties while the dichloromethane and ethyl acetate extracts exerted the best total antioxidant activity and metal chelating power. Results of enzyme inhibition activity showed that the hexane, ethyl acetate, and dichloromethane extracts had comparable anti-acetylcholinesterase activity and the latter extract revealed the highest anti-butyrylcholinesterase activity. The best α-amylase and α-glucosidase inhibition activities were obtained from the hexane extract. The dichloromethane and ethyl acetate extracts exhibited the highest cytotoxic effect against the prostate carcinoma DU-145 cells. In conclusion, these findings indicated that T. nitens can be a promising source of biomolecules with potential therapeutic applications.

7.
Sensors (Basel) ; 24(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38676279

RESUMO

This study uses a wind turbine case study as a subdomain of Industrial Internet of Things (IIoT) to showcase an architecture for implementing a distributed digital twin in which all important aspects of a predictive maintenance solution in a DT use a fog computing paradigm, and the typical predictive maintenance DT is improved to offer better asset utilization and management through real-time condition monitoring, predictive analytics, and health management of selected components of wind turbines in a wind farm. Digital twin (DT) is a technology that sits at the intersection of Internet of Things, Cloud Computing, and Software Engineering to provide a suitable tool for replicating physical objects in the digital space. This can facilitate the implementation of asset management in manufacturing systems through predictive maintenance solutions leveraged by machine learning (ML). With DTs, a solution architecture can easily use data and software to implement asset management solutions such as condition monitoring and predictive maintenance using acquired sensor data from physical objects and computing capabilities in the digital space. While DT offers a good solution, it is an emerging technology that could be improved with better standards, architectural framework, and implementation methodologies. Researchers in both academia and industry have showcased DT implementations with different levels of success. However, DTs remain limited in standards and architectures that offer efficient predictive maintenance solutions with real-time sensor data and intelligent DT capabilities. An appropriate feedback mechanism is also needed to improve asset management operations.

8.
Amino Acids ; 55(5): 579-593, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36781452

RESUMO

Histone deacetylases are well-established target enzymes involved in the pathology of different diseases including cancer and neurodegenerative disorders. The approved HDAC inhibitor drugs are associated with cellular toxicities. Different phenolic compounds have been shown to possess inhibitory activities against HDACs and are, therefore, considered safer alternatives to synthetic compounds. Here, we elucidated the binding mode and calculated the binding propensity of some of the top phenolic compounds against different isoforms representing different classes of Zn2+ ion-containing HDACs using the molecular docking approach. Our data reaffirmed the activity of the studied phenolic compounds against HDACs. Binding interaction analysis suggested that these compounds can block the activity of HDACs with or without binding to the active site zinc metal ion. Furthermore, molecular dynamics (MD) simulations were carried out on the selected crystal and docking complexes of each selected HDAC isoform. Analysis of root-mean-square displacement (RMSD) showed that the phenolic compounds demonstrated a stable binding mode over 50 ns in a way that is comparable to the cocrystal ligands. Together, these findings can aid future efforts in the search for natural inhibitors of HDACs.


Assuntos
Inibidores de Histona Desacetilases , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Inibidores de Histona Desacetilases/farmacologia , Isoformas de Proteínas/química , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Histona Desacetilase 1/química , Histona Desacetilase 1/metabolismo
9.
Amino Acids ; 55(12): 1709-1726, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37367966

RESUMO

Histone deacetylase (HDAC) inhibitors have gained attention over the past three decades because of their potential in the treatment of different diseases including various forms of cancers, neurodegenerative disorders, autoimmune, inflammatory diseases, and other metabolic disorders. To date, 5 HDAC inhibitor drugs are marketed for the treatment of hematological malignancies and several drug-candidate HDAC inhibitors are at different stages of clinical trials. However, due to the toxic side effects of these drugs resulting from the lack of target selectivity, active studies are ongoing to design and develop either class-selective or isoform-selective inhibitors. Computational methods have aided the discovery of HDAC inhibitors with the desired potency and/or selectivity. These methods include ligand-based approaches such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure-activity relationships (3D-QSAR); and structure-based virtual screening (molecular docking). The current trends involve the application of the combination of these methods and incorporating molecular dynamics simulations coupled with Poisson-Boltzmann/molecular mechanics generalized Born surface area (MM-PBSA/MM-GBSA) to improve the prediction of ligand binding affinity. This review aimed at understanding the current trends in applying these multilayered strategies and their contribution to the design/identification of HDAC inhibitors.


Assuntos
Inibidores de Histona Desacetilases , Simulação de Dinâmica Molecular , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Simulação de Acoplamento Molecular , Ligantes , Relação Quantitativa Estrutura-Atividade
10.
Amino Acids ; 55(12): 1729-1743, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37517044

RESUMO

Adenosine deaminase (ADA) is a Zn2+-containing enzyme that catalyzes the irreversible deamination of adenosine to inosine or deoxyadenosine to deoxyinosine. In addition to this enzymatic function, ADA mediates cell-to-cell interactions involved in lymphocyte co-stimulation or endothelial activation. ADA is implicated in cardiovascular pathologies such as atherosclerosis and certain types of cancers, including lymphoma and leukemia. To date, only two drugs (pentostatin and cladribine) have been approved for the treatment of hairy cell leukemia. In search of natural ADA inhibitors, we demonstrated the binding of selected phenolic compounds to the active site of ADA using molecular docking and molecular dynamics simulation. Our results show that phenolic compounds (chlorogenic acid, quercetin, and hyperoside) stabilized the ADA complex by forming persistent interactions with the catalytically essential Zn2+ ion. Furthermore, MM-GBSA ligand binding affinity calculations revealed that hyperoside had a comparable binding energy score (ΔG = - 46.56 ± 8.26 kcal/mol) to that of the cocrystal ligand in the ADA crystal structure (PDB ID: 1O5R) (ΔG = - 51.97 ± 4.70 kcal/mol). Similarly, chlorogenic acid exhibited a binding energy score (ΔG = - 18.76 ± 4.60 kcal/mol) comparable to those of the two approved ADA inhibitor drugs pentostatin (ΔG = - 14.54 ± 2.25 kcal/mol) and cladribine (ΔG = - 25.52 ± 4.10 kcal/mol) while quercetin was found to have modest binding affinity (ΔG = - 8.85 ± 7.32 kcal/mol). This study provides insights into the possible inhibitory potential of these phenolic compounds against ADA.


Assuntos
Inibidores de Adenosina Desaminase , Pentostatina , Inibidores de Adenosina Desaminase/farmacologia , Inibidores de Adenosina Desaminase/química , Simulação de Acoplamento Molecular , Quercetina/farmacologia , Cladribina , Ligantes , Ácido Clorogênico , Simulação de Dinâmica Molecular
11.
Mol Cell Biochem ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594629

RESUMO

Looking at the development status of Nigeria and other developing nations, most low-income and rural households often use coal as a source of energy which necessitates its trade very close to the communities. Moreover, the effects of exposure to coal mining activities are rarely explored or yet to be studied, not to mention the numerous street coal vendors in Nigeria. This study investigated the oxidative stress levels in serum and urine through the biomarker 8-OHdG and DNA damage via single cell gel electrophoresis (alkaline comet assay). Blood and urine levels of 8-OHdG from 130 coal vendors and 130 population-based controls were determined by ELISA. Alkaline comet assay was also performed on white blood cells for DNA damage. The average values of 8-OHdG in serum and urine of coal vendors were 22.82 and 16.03 ng/ml respectively, which were significantly greater than those detected in controls (p < 0.001; 15.46 and 10.40 ng/ml of 8-OHdG in serum and urine respectively). The average tail length, % DNA in tail and olive tail moment were 25.06 µm, 18.71% and 4.42 respectively for coal vendors. However, for controls, the average values were 4.72 µm, 3.63% and 1.50 for tail length, % DNA in tail and olive tail moment respectively which were much lower than coal vendors (p < 0.001). Therefore, prolonged exposure to coal dusts could lead to higher serum and urinary 8-OHdG and significant DNA damage in coal vendors observed in tail length, % DNA in tail, and olive tail moment by single cell gel electrophoresis. It is therefore established that coal vendors exhibit a huge risk from oxidative stress and assessment of 8-OHdG with single cell gel electrophoresis has proven to be a feasible tool as biomarkers of DNA damage.

12.
Mol Biol Rep ; 50(8): 7055-7067, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392288

RESUMO

Bacteriophages (phages) are viruses that mainly infect bacteria and are ubiquitously distributed in nature, especially to their host. Phage engineering involves nucleic acids manipulation of phage genome for antimicrobial activity directed against pathogens through the applications of molecular biology techniques such as synthetic biology methods, homologous recombination, CRISPY-BRED and CRISPY-BRIP recombineering, rebooting phage-based engineering, and targeted nucleases including CRISPR/Cas9, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Management of bacteria is widely achieved using antibiotics whose mechanism of action has been shown to target both the genetic dogma and the metabolism of pathogens. However, the overuse of antibiotics has caused the emergence of multidrug-resistant (MDR) bacteria which account for nearly 5 million deaths as of 2019 thereby posing threats to the public health sector, particularly by 2050. Lytic phages have drawn attention as a strong alternative to antibiotics owing to the promising efficacy and safety of phage therapy in various models in vivo and human studies. Therefore, harnessing phage genome engineering methods, particularly CRISPR/Cas9 to overcome the limitations such as phage narrow host range, phage resistance or any potential eukaryotic immune response for phage-based enzymes/proteins therapy may designate phage therapy as a strong alternative to antibiotics for combatting bacterial antimicrobial resistance (AMR). Here, the current trends and progress in phage genome engineering techniques and phage therapy are reviewed.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriófagos/genética , Farmacorresistência Bacteriana/genética , Bactérias
13.
BMC Public Health ; 23(1): 446, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882734

RESUMO

BACKGROUND: Cholera, a diarrheal disease caused by the bacterium Vibrio cholerae, transmitted through fecal contamination of water or food remains an ever-present risk in many countries, especially where water supply, sanitation, food safety, and hygiene are inadequate. A cholera outbreak was reported in Bauchi State, North-eastern Nigeria. We investigated the outbreak to determine the extent and assess risk factors associated with the outbreak. METHODS: We conducted a descriptive analysis of suspected cholera cases to determine the fatality rate (CFR), attack rate (AR), and trends/patterns of the outbreak. We also conducted a 1:2 unmatched case-control study to assess risk factors amongst 110 confirmed cases and 220 uninfected individuals (controls). We defined a suspected case as any person > 5 years with acute watery diarrhea with/without vomiting; a confirmed case as any suspected case in which there was laboratory isolation of Vibrio cholerae O1 or O139 from the stool while control was any uninfected individual with close contact (same household) with a confirmed case. Children under 5 were not included in the case definition however, samples from this age group were collected where such symptoms had occurred and line-listed separately. Data were collected with an interviewer-administered questionnaire and analyzed using Epi-info and Microsoft excel for frequencies, proportions, bivariate and multivariate analysis at a 95% confidence interval. RESULTS: A total of 9725 cases were line-listed with a CFR of 0.3% in the state. Dass LGA had the highest CFR (14.3%) while Bauchi LGA recorded the highest AR of 1,830 cases per 100,000 persons. Factors significantly associated with cholera infection were attending social gatherings (aOR = 2.04, 95% CI = 1.16-3.59) and drinking unsafe water (aOR = 1.74, 95% CI = 1.07-2.83). CONCLUSION: Attending social gatherings and drinking unsafe water were risk factors for cholera infection. Public health actions included chlorination of wells and distribution of water guard (1% chlorine solution) bottles to households and public education on cholera prevention. We recommend the provision of safe drinking water by the government as well as improved sanitary and hygienic conditions for citizens of the state.


Assuntos
Cólera , Criança , Humanos , Cólera/epidemiologia , Estudos de Casos e Controles , Nigéria/epidemiologia , Surtos de Doenças , Água , Diarreia/epidemiologia
14.
Chem Biodivers ; 20(8): e202300411, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37357831

RESUMO

Faced with the serious consequences resulting from the abusive and repeated use of synthetic chemicals, today rethinking crop protection is more than necessary. It is in this context that the essential oils of the Lamiaceae Ocimum gratissimum and Ocimum canum, the Poaceae Cymbopogon citratus and nardus and a Rutaceae Citrus sp. of known chemical compositions were experimented. The evaluation of the larvicidal potential of the essential oils was done by the method of topical application of the test solutions, on the L1-L2 stage larvae from the first generation of S. frugiperda obtained after rearing in an air-conditioned room. Lethal concentrations (LC10 , LC50 and LC90 ) were determined after 48 h. After assessing the larvicidal potential of essential oils, molecular docking was carried out to study protein-ligand interactions and their propensity to bind to insect enzyme sites (AChE). The essential oil of O. gratissimum was the most effective with the lowest lethal concentrations (LC10 =0.91 %, LC50 =1.91 % and LC90 =3.92 %). The least toxic oil to larvae was Citrus sp. (LC10 =5.44 %, LC50 =20.50 % and LC90 =77.41 %). Molecular docking revealed that p-cymene and thymol from O. gratissimum essential oil are structurally similar and bind to the AChE active site via predominantly hydrophobic interactions and a H-bond with Tyr374 in the case of thymol. The essential oil of O. gratissimum constitutes a potential candidate for the development of biological insecticides for the fight against insect pests and for the protection of the environment.


Assuntos
Inseticidas , Ocimum , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Spodoptera , Óleos de Plantas/química , Simulação de Acoplamento Molecular , Timol/farmacologia , Côte d'Ivoire , Ocimum/química , Inseticidas/farmacologia , Larva
15.
Chem Biodivers ; 20(8): e202300547, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37306942

RESUMO

Artemisia annua L. (Asteraceae Family) is an important plant in Asia that has been used for treating different diseases, including fever due to malaria, wounds, tubercolisis, scabues, pain, convulsions, diabetes, and inflammation. In this study we aimed to evaluate the effects of different polarity extracts (hexane, dichloromethane, ethyl acetate, ethanol, ethanol/water (70 %) and water) from A. annua against the burden of inflammation and oxidative stress occurring in colon tissue exposed to LPS. In parallel, chemical composition, antiradical, and enzyme inhibition effects against α-amylase, α-glucosidase, tyrosinase, and cholinesterases were evaluated. The water extract contained the highest content of the total phenolic with 34.59 mg gallic acid equivalent (GAE)/g extract, while the hexane had the highest content of the total flavonoid (20.06 mg rutin equivalent (RE)/g extract). In antioxidant assays, the polar extracts (ethanol, ethanol/water and water) exhibited stronger radical scavenging and reducing power abilities when compared to non-polar extracts. The hexane extract showed the best AChE, tyrosinase and glucosidase inhibitory effects. All extracts revealed effective anti-inflammatory agents, as demonstrated by the blunting effects on COX-2 and TNFα gene expression. These effects seemed to be not related to the only phenolic content. However, it is worthy of interest to highlight how the higher potency against LPS-induced gene expression was shown by the water extract ; thus suggesting a potential phytotherapy application in the management of clinical symptoms related to inflammatory colon diseases, although future in vivo studies are needed to confirm such in vitro and ex vivo observations.


Assuntos
Antioxidantes , Artemisia annua , Antioxidantes/química , Hexanos , Extratos Vegetais/química , Monofenol Mono-Oxigenase , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Fenóis/farmacologia , Inflamação/tratamento farmacológico , Água , Etanol
16.
Arch Pharm (Weinheim) ; 356(12): e2300444, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37754205

RESUMO

The chemical composition as well as antioxidant, antiproliferative, and enzyme inhibition activities of extracts from aerial parts of Thymus leucostomus H ausskn. & V elen. obtained with hexane, methanol, and water were evaluated. Results showed that the methanol extract had significantly (p < 0.05) the highest total phenolic content (TPC; 107.80 mg GAE/g) and total flavonoids content (TFC; 25.21 mg RE/g) followed by the aqueous extract (102.72 mg GAE/g and 20.88 mg RE/g, respectively). LC-MS/MS-guided profiling of the three extracts revealed that rosmarinic acid (34.8%), hesperetin (42.9%), and linoleic acid (18%) were the dominant compounds in the methanol, aqueous and hexane extracts, respectively. GC-MS analysis of the hexane extract showed that É£-sitosterol (29.9%) was the major constituent. The methanol extract displayed significantly (p < 0.05) the highest Cu++ , Fe+++ , and Mo(VI) ions scavenging and reducing properties while the aqueous extract exerted significantly (p < 0.05) the highest metal chelating power (42.51 mg EDTAE/g). Both the hexane and methanol extracts effectively inhibited the acetylcholinesterase enzyme (2.63 and 2.65 mg GALAE/g, respectively) while the former extract exerted significantly (p < 0.05) the highest butyrylcholinesterase (2.32 mg GALAE/g), tyrosinase (19.73 mg KAE/g), and amylase (1.16 mmol ACAE/g) inhibition capacity. The aqueous extract exhibited the best glucosidase inhibition property (0.49 mmol ACAE/g). The methanol and hexane extracts exerted a higher cytotoxic effect on HT-29 (IC50 : 8.12 µg/mL) and HeLa (IC50 = 8.08 µg/mL) cells, respectively. In conclusion, these results provide valuable insight into the potential use of T. leucostomus bioactive extracts in different pharmaceutical applications.


Assuntos
Antioxidantes , Hexanos , Antioxidantes/farmacologia , Antioxidantes/química , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Hexanos/análise , Metanol/análise , Butirilcolinesterase , Acetilcolinesterase , Espectrometria de Massas em Tandem , Extratos Vegetais/química , Relação Estrutura-Atividade
17.
Mol Divers ; 26(2): 1005-1016, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33846894

RESUMO

Methionine aminopeptidase (MetAP2) is a metal-containing enzyme that removes initiator methionine from the N-terminus of a newly synthesized protein. Inhibition of the enzyme is crucial in diminishing cancer growth and metastasis. Fumagillin-a natural irreversible inhibitor of MetAP2-and its derivatives are used as potent MetAP2 inhibitors. However, because of their adverse effects, none of them has progressed to clinical studies. In search for potential reversible inhibitors, we built structure-based pharmacophore models using the crystal structure of MetAP2 complexed with fumagillin (PDB ID: 1BOA). The pharmacophore models were validated using Gunner-Henry scoring method. The best pharmacophore consisting of 1 H-bond donor, 1 H-bond acceptor, and 3 hydrophobic features was used to conduct pharmacophore-based virtual screening of ZINC15 database against MetAP2. The top 10 compounds with pharmacophore fit values > 3.00 were selected for further analysis. These compounds were subjected to absorption, distribution, metabolism, elimination, and toxicity (ADMET) prediction and found to have druglike properties. Furthermore, molecular docking calculations was performed on these hits using AutoDock4 to predict their binding mode and binding energy. Three diverse compounds: ZINC000014903160, ZINC000040174591, and ZINC000409110720 with respective binding energy/docking scores of - 9.22, - 9.21, and -817 kcal/mol, were submitted to 100 ns (MD) simulations using Nanoscale MD (NAMD) software. The compounds showed stable binding mode over time. Therefore, they may serve as a scaffold for further computational and experimental optimization toward the design of more potent and safer MetAP2 inhibitors.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Aminopeptidases , Humanos , Metionina , Simulação de Acoplamento Molecular
18.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080355

RESUMO

Several species within the genera Cassia or Senna have a treasure of traditional medicines worldwide and can be a promising source of bioactive molecules. The objective of the present study was to evaluate the phenolic content and antioxidant and enzyme inhibition activities of leaf methanolic extracts of C. fistula L., C. grandis L., S. alexandrina Mill., and S. italica Mill. The two Cassia spp. contained higher total polyphenolic content (42.23-49.75 mg GAE/g) than the two Senna spp., and C. fistula had significantly (p ˂ 0.05) the highest concentration. On the other hand, the Senna spp. showed higher total flavonoid content (41.47-59.24 mg rutin equivalent per g of extract) than that found in the two Cassia spp., and S. alexandrina significantly (p ˂ 0.05) accumulated the highest amount. HPLC-MS/MS analysis of 38 selected bioactive compounds showed that the majority of compounds were identified in the four species, but with sharp variations in their concentrations. C. fistula was dominated by epicatechin (8928.75 µg/g), C. grandis by kaempferol-3-glucoside (47,360.04 µg/g), while rutin was the major compound in S. italica (17,285.02 µg/g) and S. alexandrina (6381.85). The methanolic extracts of the two Cassia species exerted significantly (p ˂ 0.05) higher antiradical activity, metal reducing capacity, and total antioxidant activity than that recorded from the two Senna species' methanolic extracts, and C. fistula displayed significantly (p ˂ 0.05) the highest values. C. grandis significantly (p ˂ 0.05) exhibited the highest metal chelating power. The results of the enzyme inhibition activity showed that the four species possessed anti-AChE activity, and the highest value, but not significantly (p ≥ 0.05) different from those obtained by the two Cassia spp., was exerted by S. alexandrina. The Cassia spp. exhibited significantly (p ˂ 0.05) higher anti-BChE and anti-Tyr properties than the Senna spp., and C. grandise revealed significantly (p ˂ 0.05) the highest values. C. grandise revealed significantly (p ˂ 0.05) the highest α- amylase inhibition, while the four species had more or less the same effect against the α-glucosidase enzyme. Multivariate analysis and in silico studies showed that many of the identified phenols may play key roles as antioxidant and enzyme inhibitory properties. Thus, these Cassia and Senna species could be a promising source of natural bioactive agents with beneficial effects for human health.


Assuntos
Cassia , Senna , Antioxidantes/farmacologia , Metanol , Fenóis , Extratos Vegetais/farmacologia , Folhas de Planta , Rutina/farmacologia , Espectrometria de Massas em Tandem , alfa-Amilases
19.
Molecules ; 27(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35956963

RESUMO

The bioactive content, antioxidant properties, and enzyme inhibition properties of extracts of Alcea fasciculiflora from Turkey prepared with different solvents (water, methanol, ethyl acetate) and extraction methods (maceration, soxhlet, homogenizer assisted extraction, and ultrasound assisted extraction) were examined in this study. UHPLC-HRMS analysis detected or annotated a total of 50 compounds in A. fasciculiflora extracts, including 18 hydroxybenzoic and hydroxycinnamic acids, 7 Hexaric acids, 7 Coumarins, 15 Flavonoids, and 3 hydroxycinnamic acid amides. The extracts had phenolic and flavonoid levels ranging from 14.25 to 24.87 mg GAE/g and 1.68 to 25.26 mg RE/g, respectively, in the analysis. Both DPPH and ABTS tests revealed radical scavenging capabilities (between 2.63 and 35.33 mg TE/g and between 13.46 and 76.27 mg TE/g, respectively). The extracts had reducing properties (CUPRAC: 40.38-78 TE/g and FRAP: 17.51-42.58 TE/g). The extracts showed metal chelating activity (18.28-46.71 mg EDTAE/g) as well as total antioxidant capacity (phosphomolybdenum test) (0.90-2.12 mmol TE/g). DPPH, ABTS, FRAP, and metal chelating tests indicated the water extracts to be the best antioxidants, while the ethyl acetate extracts had the highest overall antioxidant capacity regardless of the extraction technique. Furthermore, anti-acetylcholinesterase activity was identified in all extracts (0.17-2.80 mg GALAE/g). The water extracts and the ultrasound-assisted ethyl acetate extract were inert against butyrylcholinesterase, but the other extracts showed anti-butyrylcholinesterase activity (1.17-5.80 mg GALAE/g). Tyrosine inhibitory action was identified in all extracts (1.79-58.93 mg KAE/g), with the most effective methanolic extracts. Only the ethyl acetate and methanolic extracts produced by maceration and homogenizer aided extraction showed glucosidase inhibition (0.11-1.11 mmol ACAE/g). These findings showed the overall bioactivity of the different extracts of A. fasciculiflora and provided an overview of the combination of solvent type and extraction method that could yield bioactive profile and pharmacological properties of interest and hence, could be a useful reference for future studies on this species.


Assuntos
Extratos Vegetais , Solventes , Acetatos/química , Antioxidantes/química , Antioxidantes/farmacologia , Metanol/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Solventes/química , Turquia , Água/química
20.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897865

RESUMO

Spathodea campanulata is an important medicinal plant with traditional uses in the tropical zone. In the current work, we aimed to determine the chemical profiles and biological effects of extracts (methanolic and infusion (water)) from the leaves and stem bark of S. campanulata. The chemical components of the tested extracts were identified using LC-ESI-QTOF-MS. Biological effects were tested in terms of antioxidant (radical scavenging, reducing power, and metal chelating), enzyme inhibitory (cholinesterase, amylase, glucosidase, and tyrosinase), antineoplastic, and antiviral activities. Fifty-seven components were identified in the tested extracts, including iridoids, flavonoids, and phenolic acids as the main constituents. In general, the leaves-MeOH extract was the most active in the antioxidant assays (DPPH, ABTS, CUPRAC, FRAP, metal chelating, and phosphomolybdenum). Antineoplastic effects were tested in normal (VERO cell line) and cancer cell lines (FaDu, HeLa, and RKO). The leaf infusion, as well as the extracts obtained from stem bark, showed antineoplastic activity (CC50 119.03-222.07 µg/mL). Antiviral effects were tested against HHV-1 and CVB3, and the leaf methanolic extract (500 µg/mL) exerted antiviral activity towards HHV-1, inhibiting the viral-induced cytopathic effect and reducing the viral infectious titre by 5.11 log and viral load by 1.45 log. In addition, molecular docking was performed to understand the interactions between selected chemical components and viral targets (HSV-1 DNA polymerase, HSV-1 protease, and HSV-1 thymidine kinase). The results presented suggest that S. campanulata may be a bright spot in moving from natural sources to industrial applications, including novel drugs, cosmeceuticals, and nutraceuticals.


Assuntos
Bignoniaceae , Farmácia , Antioxidantes/química , Antioxidantes/farmacologia , Antivirais/farmacologia , Bignoniaceae/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA