Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mod Pathol ; 34(9): 1780-1794, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34017063

RESUMO

The use of immunohistochemistry in the reporting of prostate biopsies is an important adjunct when the diagnosis is not definite on haematoxylin and eosin (H&E) morphology alone. The process is however inherently inefficient with delays while waiting for pathologist review to make the request and duplicated effort reviewing a case more than once. In this study, we aimed to capture the workflow implications of immunohistochemistry requests and demonstrate a novel artificial intelligence tool to identify cases in which immunohistochemistry (IHC) is required and generate an automated request. We conducted audits of the workflow for prostate biopsies in order to understand the potential implications of automated immunohistochemistry requesting and collected prospective cases to train a deep neural network algorithm to detect tissue regions that presented ambiguous morphology on whole slide images. These ambiguous foci were selected on the basis of the pathologist requesting immunohistochemistry to aid diagnosis. A gradient boosted trees classifier was then used to make a slide-level prediction based on the outputs of the neural network prediction. The algorithm was trained on annotations of 219 immunohistochemistry-requested and 80 control images, and tested by threefold cross-validation. Validation was conducted on a separate validation dataset of 222 images. Non IHC-requested cases were diagnosed in 17.9 min on average, while IHC-requested cases took 33.4 min over multiple reporting sessions. We estimated 11 min could be saved on average per case by automated IHC requesting, by removing duplication of effort. The tool attained 99% accuracy and 0.99 Area Under the Curve (AUC) on the test data. In the validation, the average agreement with pathologists was 0.81, with a mean AUC of 0.80. We demonstrate the proof-of-principle that an AI tool making automated immunohistochemistry requests could create a significantly leaner workflow and result in pathologist time savings.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Imuno-Histoquímica , Patologia Clínica/métodos , Neoplasias da Próstata/diagnóstico , Automação Laboratorial/métodos , Biópsia , Humanos , Masculino , Fluxo de Trabalho
2.
Leukemia ; 37(2): 348-358, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470992

RESUMO

The grading of fibrosis in myeloproliferative neoplasms (MPN) is an important component of disease classification, prognostication and monitoring. However, current fibrosis grading systems are only semi-quantitative and fail to fully capture sample heterogeneity. To improve the quantitation of reticulin fibrosis, we developed a machine learning approach using bone marrow trephine (BMT) samples (n = 107) from patients diagnosed with MPN or a reactive marrow. The resulting Continuous Indexing of Fibrosis (CIF) enhances the detection and monitoring of fibrosis within BMTs, and aids MPN subtyping. When combined with megakaryocyte feature analysis, CIF discriminates between the frequently challenging differential diagnosis of essential thrombocythemia (ET) and pre-fibrotic myelofibrosis with high predictive accuracy [area under the curve = 0.94]. CIF also shows promise in the identification of MPN patients at risk of disease progression; analysis of samples from 35 patients diagnosed with ET and enrolled in the Primary Thrombocythemia-1 trial identified features predictive of post-ET myelofibrosis (area under the curve = 0.77). In addition to these clinical applications, automated analysis of fibrosis has clear potential to further refine disease classification boundaries and inform future studies of the micro-environmental factors driving disease initiation and progression in MPN and other stem cell disorders.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Mielofibrose Primária , Trombocitemia Essencial , Humanos , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/patologia , Policitemia Vera/patologia , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/patologia , Medula Óssea/patologia , Trombocitemia Essencial/diagnóstico , Trombocitemia Essencial/patologia , Fibrose
3.
Cancers (Basel) ; 13(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809521

RESUMO

Testicular cancer is the most common cancer in men aged from 15 to 34 years. Lymphovascular invasion refers to the presence of tumours within endothelial-lined lymphatic or vascular channels, and has been shown to have prognostic significance in testicular germ cell tumours. In non-seminomatous tumours, lymphovascular invasion is the most powerful prognostic factor for stage 1 disease. For the pathologist, searching multiple slides for lymphovascular invasion can be highly time-consuming. The aim of this retrospective study was to develop and assess an artificial intelligence algorithm that can identify areas suspicious for lymphovascular invasion in histological digital whole slide images. Areas of possible lymphovascular invasion were annotated in a total of 184 whole slide images of haematoxylin and eosin (H&E) stained tissue from 19 patients with testicular germ cell tumours, including a mixture of seminoma and non-seminomatous cases. Following consensus review by specialist uropathologists, we trained a deep learning classifier for automatic segmentation of areas suspicious for lymphovascular invasion. The classifier identified 34 areas within a validation set of 118 whole slide images from 10 patients, each of which was reviewed by three expert pathologists to form a majority consensus. The precision was 0.68 for areas which were considered to be appropriate to flag, and 0.56 for areas considered to be definite lymphovascular invasion. An artificial intelligence tool which highlights areas of possible lymphovascular invasion to reporting pathologists, who then make a final judgement on its presence or absence, has been demonstrated as feasible in this proof-of-concept study. Further development is required before clinical deployment.

4.
Blood Adv ; 4(14): 3284-3294, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32706893

RESUMO

Accurate diagnosis and classification of myeloproliferative neoplasms (MPNs) requires integration of clinical, morphological, and genetic findings. Despite major advances in our understanding of the molecular and genetic basis of MPNs, the morphological assessment of bone marrow trephines (BMT) is critical in differentiating MPN subtypes and their reactive mimics. However, morphological assessment is heavily constrained by a reliance on subjective, qualitative, and poorly reproducible criteria. To improve the morphological assessment of MPNs, we have developed a machine learning approach for the automated identification, quantitative analysis, and abstract representation of megakaryocyte features using reactive/nonneoplastic BMT samples (n = 43) and those from patients with established diagnoses of essential thrombocythemia (n = 45), polycythemia vera (n = 18), or myelofibrosis (n = 25). We describe the application of an automated workflow for the identification and delineation of relevant histological features from routinely prepared BMTs. Subsequent analysis enabled the tissue diagnosis of MPN with a high predictive accuracy (area under the curve = 0.95) and revealed clear evidence of the potential to discriminate between important MPN subtypes. Our method of visually representing abstracted megakaryocyte features in the context of analyzed patient cohorts facilitates the interpretation and monitoring of samples in a manner that is beyond conventional approaches. The automated BMT phenotyping approach described here has significant potential as an adjunct to standard genetic and molecular testing in established or suspected MPN patients, either as part of the routine diagnostic pathway or in the assessment of disease progression/response to treatment.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Trombocitemia Essencial , Inteligência Artificial , Humanos , Megacariócitos , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA