Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 42(12): 936-945, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29037863

RESUMO

Methylation of outer membrane proteins (OMPs) has been implicated in bacterial virulence. Lysine methylation in rickettsial OmpB is correlated with rickettsial virulence, and N- and O-methylations are also observed in virulence-relevant OMPs from several pathogenic bacteria that cause typhus, leptospirosis, tuberculosis, and anaplasmosis. We summarize recent findings on the structure of methylated OmpB, biochemical characterization, and crystal structures of OmpB methyltransferases. Native rickettsial OmpB purified from highly virulent strains contains multiple clusters of trimethyllysine, in contrast with mostly monomethyllysine, and no trimethyllysine is found in an avirulent strain. Crystal structure of the methyltransferases reveals mechanistic insights for catalysis, and a working model is discussed for this unusual post-translational modification.


Assuntos
Bactérias/patogenicidade , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Metilação , Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Virulência
2.
J Biol Chem ; 291(38): 19962-74, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27474738

RESUMO

Rickettsia belong to a family of Gram-negative obligate intracellular infectious bacteria that are the causative agents of typhus and spotted fever. Outer membrane protein B (OmpB) occurs in all rickettsial species, serves as a protective envelope, mediates host cell adhesion and invasion, and is a major immunodominant antigen. OmpBs from virulent strains contain multiple trimethylated lysine residues, whereas the avirulent strain contains mainly monomethyllysine. Two protein-lysine methyltransferases (PKMTs) that catalyze methylation of recombinant OmpB at multiple sites with varying sequences have been identified and overexpressed. PKMT1 catalyzes predominantly monomethylation, whereas PKMT2 catalyzes mainly trimethylation. Rickettsial PKMT1 and PKMT2 are unusual in that their primary substrate appears to be limited to OmpB, and both are capable of methylating multiple lysyl residues with broad sequence specificity. Here we report the crystal structures of PKMT1 from Rickettsia prowazekii and PKMT2 from Rickettsia typhi, both the apo form and in complex with its cofactor S-adenosylmethionine or S-adenosylhomocysteine. The structure of PKMT1 in complex with S-adenosylhomocysteine is solved to a resolution of 1.9 Å. Both enzymes are dimeric with each monomer containing an S-adenosylmethionine binding domain with a core Rossmann fold, a dimerization domain, a middle domain, a C-terminal domain, and a centrally located open cavity. Based on the crystal structures, residues involved in catalysis, cofactor binding, and substrate interactions were examined using site-directed mutagenesis followed by steady state kinetic analysis to ascertain their catalytic functions in solution. Together, our data reveal new structural and mechanistic insights into how rickettsial methyltransferases catalyze OmpB methylation.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Histona-Lisina N-Metiltransferase/química , Rickettsia prowazekii/química , Rickettsia typhi/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Catálise , Cristalografia por Raios X , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Cinética , Domínios Proteicos , Dobramento de Proteína , Rickettsia prowazekii/genética , Rickettsia prowazekii/metabolismo , Rickettsia typhi/genética , Rickettsia typhi/metabolismo
3.
J Bacteriol ; 194(23): 6410-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23002218

RESUMO

Rickettsia prowazekii, the etiologic agent of epidemic typhus, is a potential biological threat agent. Its outer membrane protein B (OmpB) is an immunodominant antigen and plays roles as protective envelope and as adhesins. The observation of the correlation between methylation of lysine residues in rickettsial OmpB and bacterial virulence has suggested the importance of an enzymatic system for the methylation of OmpB. However, no rickettsial lysine methyltransferase has been characterized. Bioinformatic analysis of genomic DNA sequences of Rickettsia identified putative lysine methyltransferases. The genes of the potential methyltransferases were synthesized, cloned, and expressed in Escherichia coli, and expressed proteins were purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The methyltransferase activities of the purified proteins were analyzed by methyl incorporation of radioactively labeled S-adenosylmethionine into recombinant fragments of OmpB. Two putative recombinant methyltransferases (rRP789 and rRP027-028) methylated recombinant OmpB fragments. The specific activity of rRP789 is 10- to 30-fold higher than that of rRP027-028. Western blot analysis using specific antibodies against trimethyl lysine showed that both rRP789 and rRP027-028 catalyzed trimethylation of recombinant OmpB fragments. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis showed that rRP789 catalyzed mono-, di-, and trimethylation of lysine, while rRP027-028 catalyzed exclusively trimethylation. To our knowledge, rRP789 and rRP027-028 are the first biochemically characterized lysine methyltransferases of outer membrane proteins from Gram-negative bacteria. The production and characterization of rickettsial lysine methyltransferases provide new tools to investigate the mechanism of methylation of OmpB, effects of methylation on the structure and function of OmpB, and development of methylated OmpB-based diagnostic assays and vaccine candidates.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Rickettsia prowazekii/enzimologia , Rickettsia prowazekii/metabolismo , Western Blotting , Cromatografia de Afinidade , Cromatografia Líquida , Clonagem Molecular , Biologia Computacional , Escherichia coli/genética , Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/isolamento & purificação , Marcação por Isótopo , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Rickettsia prowazekii/genética , S-Adenosilmetionina/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA