RESUMO
Cows in early lactation (EL) are purportedly immune suppressed, which renders them more susceptible to disease. Thus, the study objective was to compare key biomarkers of immune activation from i.v. LPS between EL and mid-lactation (ML) cows. Multiparous EL (20 ± 2 DIM; n = 11) and ML (131 ± 31 DIM; n = 12) cows were enrolled in a 2 × 2 factorial design and assigned to 1 of 2 treatments by lactation stage (LS): (1) EL (EL-LPS; n = 6) or ML (ML-LPS; n = 6) cows administered a single LPS bolus from Escherichia coli O55:B5 (0.09 µg/kg of BW), or (2) pair-fed (PF) EL (EL-PF; n = 5) or ML (ML-PF; n = 6) cows administered i.v. saline. After LPS administration, cows were intensely evaluated for 3 d to analyze their response and recovery to LPS. Rectal temperature increased in LPS relative to PF cows (1.1°C in the first 9 h), and the response was more severe in EL-LPS relative to ML-LPS cows (2.3 vs. 1.3°C increase at 4 h post-LPS; respectively). Respiration rate increased only in EL-LPS cows (47% relative to ML-LPS in the first hour post-LPS). Circulating tumor necrosis factor-α, IL-6, monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1α, MIP-1ß, and IFN-γ-inducible protein-10 increased within the first 6 h after LPS and these changes were exacerbated in EL-LPS relative to ML-LPS cows (6.3-fold, 4.8-fold, 57%, 93%, 10%, and 61%, respectively). All cows administered LPS had decreased circulating iCa relative to PF cows (34% at the 6 h nadir), but the hypocalcemia was more severe in EL-LPS than ML-LPS cows (14% at 6 h nadir). In response to LPS, neutrophils decreased regardless of LS, then increased into neutrophilia by 24 h in all LPS relative to PF cows (2-fold); however, the neutrophilic phase was augmented in EL- compared with ML-LPS cows (63% from 24 to 72 h). Lymphocytes and monocytes rapidly decreased then gradually returned to baseline in LPS cows regardless of LS; however, monocytes were increased (57%) at 72 h in EL-LPS relative to ML-LPS cows. Platelets were reduced (46%) in LPS relative to PF cows throughout the 3-d following LPS, and from 24 to 48 h, platelets were further decreased (41%) in EL-LPS compared with ML-LPS. During the 3-d following LPS, serum amyloid A (SAA), LPS-binding protein (LBP), and haptoglobin (Hp) increased in LPS compared with PF groups (9-fold, 72%, and 153-fold, respectively), and the LBP and Hp responses were more exaggerated in EL-LPS than ML-LPS cows (85 and 79%, respectively) whereas the SAA response did not differ by LS. Thus, our data indicates that EL immune function does not appear "suppressed," and in fact many aspects of the immune response are seemingly functionally robust.
Assuntos
Inflamação , Lactação , Lipopolissacarídeos , Animais , Bovinos , Lipopolissacarídeos/farmacologia , Feminino , Inflamação/veterinária , Escherichia coli , LeiteRESUMO
Most immunometabolic research uses mid-lactation (ML) cows. Cows in early lactation (EL) are in a presumed state of immune suppression/dysregulation and less is known about how they respond to a pathogen. Study objectives were to compare the production and metabolic responses to i.v. LPS and to differentiate between the direct effects of immune activation and the indirect effects of illness-induced hypophagia in EL and ML cows. Cows in EL (n = 11; 20 ± 2 DIM) and ML (n = 12; 131 ± 31 DIM) were enrolled in a 2 × 2 factorial design containing 2 experimental periods (P). During P1 (3 d), cows were fed ad libitum and baseline data were collected. At the initiation of P2 (3 d), cows were randomly assigned to 1 of 2 treatments by lactation stage (LS): (1) EL (EL-LPS; n = 6) or ML (ML-LPS; n = 6) cows administered i.v. a single bolus of 0.09 µg LPS/kg of BW; Escherichia coli O55:B5 or (2) pair-fed (PF) EL (EL-PF; n = 5) or ML (ML-PF; n = 6) cows administered i.v. saline. Administering LPS decreased DMI and this was more severe in EL-LPS than ML-LPS cows (34% and 11% relative to baseline, respectively). By design, P2 DMI patterns were similar in the PF groups compared with their LPS counterparts. Milk yield decreased following LPS (42% on d 1 relative to P1) and despite an exacerbated decrease in EL-LPS cows on d 1 (25% relative to ML-LPS), remained similar between LS from d 2 to 3. The EL-LPS cows had increased milk fat content, but no difference in protein and lactose percentages compared with ML-LPS cows. Further, cumulative ECM yield was increased (21%) in EL-LPS compared with ML-LPS cows. During P2, EL-LPS cows had a more intense increase in MUN and BUN than ML-LPS and EL-PF cows. Administering LPS did not cause hypoglycemia in either EL-LPS or ML-LPS cows, but glucose was increased (33%) in EL-LPS compared with EL-PF. Hyperinsulinemia occurred after LPS, and insulin was further increased in ML-LPS than EL-LPS cows (2.2-fold at 12 h peak). During P2, circulating glucagon increased only in EL-LPS cows (64% relative to all other groups). Both EL groups had increased NEFA at 3 and 6 h after LPS from baseline (56%), but NEFA in EL-LPS cows gradually returned to baseline thereafter and were reduced relative to EL-PF until 36 h (50% from 12 to 24 h). Alterations in BHB did not differ between ML groups, but EL-LPS had reduced BHB compared with EL-PF from 24 to 72 h (51%). Results indicate that there are distinct LS differences in the anorexic and metabolic responses to immune activation. Collectively, EL cows are more sensitive to the catabolic effects of LPS than ML cows, but these exacerbated metabolic responses appear coordinated to fuel an augmented immune system while simultaneously supporting milk synthesis.
Assuntos
Lactação , Lipopolissacarídeos , Leite , Animais , Bovinos , Feminino , Lipopolissacarídeos/farmacologia , Leite/metabolismo , Leite/químicaRESUMO
Objectives were to evaluate the effects of a multistrain Bacillus-based (Bacillus subtilis and Bacillus pumilus blend) direct-fed microbial (DFM) on production, metabolism, inflammation biomarkers and gastrointestinal tract (GIT) permeability during and following feed restriction (FR) in mid-lactation Holstein cows. Multiparous cows (n = 36; 138 ± 53 DIM) were randomly assigned to 1 of 3 dietary treatments: (1) control (CON; 7.5 g/d rice hulls; n = 12), (2) DFM10 (10 g/d Bacillus DFM, 4.9 × 109 cfu/d; n = 12) or 3) DFM15 (15 g/d Bacillus DFM, 7.4 × 109 cfu/d; n = 12). Before study initiation, cows were fed their respective treatments for 32 d. Cows continued to receive treatments during the trial, which consisted of 3 experimental periods (P): P1 (5 d) served as baseline for P2 (5 d), during which all cows were restricted to 40% of P1 DMI, and P3 (5 d), a "recovery" where cows were fed ad libitum. On d 4 of P1 and on d 2 and 5 of P2, GIT permeability was evaluated in vivo using the oral paracellular marker Cr-EDTA. As anticipated, FR decreased milk production, insulin, glucagon, and BUN but increased nonesterified fatty acids. During recovery, DMI rapidly increased on d 1 then subsequently decreased (4.9 kg) on d 2 before returning to baseline, whereas milk yield slowly increased but remained decreased (13%) relative to P1. The DFM10 cows had increased DMI and milk yield relative to DFM15 during P3 (10%). Overall, milk lactose content was increased in DFM cows relative to CON (0.10 percentage units), and DFM10 cows tended to have increased lactose yield relative to CON and DFM15 during P3 (8% and 10%, respectively). No overall treatment differences were observed for other milk composition variables. Circulating glucose was quadratically increased in DFM10 cows compared with CON and DFM15 during FR and recovery. Plasma Cr area under the curve was increased in all cows on d 2 (9%) and 5 (6%) relative to P1. Circulating LPS binding protein (LBP), serum amyloid A (SAA), and haptoglobin (Hp) increased in all cows during P2 compared with baseline (31%, 100%, and 9.0-fold, respectively). Circulating Hp concentrations continued to increase during P3 (274%). Overall, circulating LBP and Hp tended to be increased in DFM15 cows relative to DFM10 (29% and 81%, respectively), but no treatment differences were observed for SAA. Following feed reintroduction during P3, fecal pH initially decreased (0.62 units), but returned to baseline levels whereas fecal starch markedly increased (2.5-fold) and remained increased (82%). Absolute quantities of a fecal Butyryl-CoA CoA transferase (but) gene associated with butyrate synthesis, collected by fecal swab were increased in DFM10 cows compared with CON and DFM15 cows. In summary, FR increased GIT permeability, caused inflammation, and decreased production. Feeding DFM10 increased some key production and metabolism variables and upregulated a molecular biomarker of microbial hindgut butyrate synthesis, while DFM15 appeared to augment immune activation.
Assuntos
Ração Animal , Biomarcadores , Dieta , Trato Gastrointestinal , Inflamação , Lactação , Animais , Bovinos , Feminino , Dieta/veterinária , Inflamação/veterinária , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo , Leite/química , Leite/metabolismo , Bacillus , PermeabilidadeRESUMO
Study objectives were to compare the immune response, metabolism, and production following intramammary LPS (IMM LPS) administration in early and mid-lactation cows. Early (E-LPS; n = 11; 20 ± 4 DIM) and mid- (M-LPS; n = 10; 155 ± 40 DIM) lactation cows were enrolled in an experiment consisting of 2 periods (P). During P1 (5 d) cows were fed ad libitum and baseline data were collected, including liver and muscle biopsies. At the beginning of P2 (3 d) cows received 10 mL of sterile saline containing 10 µg of LPS from Escherichia coli O111:B4/mL into the left rear quarter of the mammary gland, and liver and muscle biopsies were collected at 12 h after LPS. Tissues were analyzed for metabolic flexibility, which measures substrate switching capacity from pyruvic acid to palmitic acid oxidation. Data were analyzed with the MIXED procedure in SAS 9.4. Rectal temperature was assessed hourly for the first 12 h after LPS and every 6 h thereafter for the remainder of P2. All cows developed a febrile response following LPS, but E-LPS had a more intense fever than M-LPS cows (0.7°C at 5 h after LPS). Blood samples were collected at 0, 3, 6, 9, 12, 24, 36, 48, and 72 h after LPS for analysis of systemic inflammation and metabolism parameters. Total serum Ca decreased after LPS (26% at 6 h nadir) but did not differ by lactation stage (LS). Circulating neutrophils decreased, then increased after LPS in both LS, but E-LPS had exaggerated neutrophilia (56% from 12 to 48 h) compared with M-LPS. Haptoglobin increased after LPS (15-fold) but did not differ by LS. Many circulating cytokines were increased after LPS, and IL-6, IL-10, TNF-α, MCP-1, and IP-10 were further augmented in E-LPS compared with M-LPS cows. Relative to P1, all cows had reduced milk yield (26%) and DMI (14%) on d 1 that did not differ by LS. Somatic cell score increased rapidly in response to LPS regardless of LS and gradually decreased from 18 h onwards. Milk component yields decreased after LPS. However, E-LPS had increased fat (11%) and tended to have increased lactose (8%) yield compared with M-LPS cows throughout P2. Circulating glucose was not affected by LPS. Nonesterified fatty acids (NEFA) decreased in E-LPS (29%) but not M-LPS cows. ß-Hydroxybutyrate slightly increased (14%) over time after LPS regardless of LS. Insulin increased after LPS in all cows, but E-LPS had blunted hyperinsulinemia (52%) compared with M-LPS cows. Blood urea nitrogen increased after LPS, and the relative change in BUN was elevated in E-LPS cows compared with M-LPS cows (36% and 13%, respectively, from 9 to 24 h). During P1, metabolic flexibility was increased in liver and muscle in early lactating cows compared with mid-lactation cows, but 12 h after LPS, metabolic flexibility was reduced and did not differ by LS. In conclusion, IMM LPS caused severe immune activation, and E-LPS cows had a more intense inflammatory response compared with M-LPS cows, but the effects on milk synthesis was similar between LS. Some parameters of the E-LPS metabolic profile suggest continuation of metabolic adjustments associated with early lactation to support both a robust immune system and milk synthesis.
Assuntos
Lactação , Lipopolissacarídeos , Glândulas Mamárias Animais , Leite , Animais , Bovinos , Feminino , Lipopolissacarídeos/farmacologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/imunologia , Leite/metabolismo , Leite/química , Mastite Bovina/metabolismo , Mastite Bovina/imunologiaRESUMO
Intestinal hyperpermeability and subsequent immune activation alters nutrient partitioning and thus, decreases productivity. Developing experimental models of intestinal barrier dysfunction in heathy cows is a prerequisite in identifying nutritional strategies to mitigate it. Six cannulated Holstein cows (mean ± standard deviation, 37 ± 10 kg/d milk yield; 219 ± 97 d in milk; 691 ± 70 kg body weight) were used in a replicated 3 × 3 Latin square design experiment with 21-d periods (16-d wash-out and 5-d challenge) to evaluate either feed restriction or hindgut acidosis as potential models for inducing intestinal hyperpermeability. Cows were randomly assigned to treatment sequence within square and treatment sequences were balanced for carryover effects. Treatments during the challenge were (1) control (CTR; ad libitum feeding); (2) feed restriction (FR; total mixed ration fed at 50% of ad libitum feed intake); and (3) resistant starch (RS; 500 g of resistant starch infused in abomasum once a day as a pulse-dose 30 min before morning feeding). The RS (ActiStar RT 75330, Cargill Inc.) was tapioca starch that was expected to be resistant to enzymatic digestion in the small intestine and highly fermentable in the hindgut. Blood samples were collected 4 h after feeding on d 13 and 14 of the wash-out periods (baseline data used as covariate), and on d 1, 3, and 5 of the challenge periods. Fecal samples were collected 4 and 8 h after the morning feeding on d 14 of the wash-out periods and d 5 of the challenge periods. By design, FR decreased dry matter intake (48%) relative to CTR and RS, and this resulted in marked reductions in milk and 3.5% FCM yields over time, with the most pronounced decrease occurring on d 5 of the challenge (34 and 27%, respectively). Further, FR increased somatic cell count by 115% on d 5 of the challenge relative to CTR and RS. Overall, FR increased nonesterified fatty acids (159 vs. 79 mEq/L) and decreased BHB (8.5 vs. 11.2 mg/dL), but did not change circulating glucose relative to CTR. However, RS had no effect on production or metabolism metrics. Resistant starch decreased fecal pH 8 h after the morning feeding (6.26 vs. 6.81) relative to CTR and FR. Further, RS increased circulating lipopolysaccharide binding protein (4.26 vs. 2.74 µg/mL) compared with FR only on d 1 of the challenge. Resistant starch also increased Hp (1.52 vs. 0.48 µg/mL) compared with CTR, but only on d 5 of the challenge. However, neither RS or FR affected concentrations of serum amyloid A, IL1ß, or circulating endotoxin compared with CTR. The lack of consistent responses in inflammatory biomarkers suggests that FR and RS did not meaningfully affect intestinal barrier function. Thus, future research evaluating the effects of hindgut acidosis and FR using more intense insults and direct metrics of intestinal barrier function is warranted.
Assuntos
Lactação , Amido Resistente , Feminino , Bovinos , Animais , Amido Resistente/metabolismo , Amido Resistente/farmacologia , Dieta/veterinária , Abomaso/metabolismo , Leite/metabolismo , Ração Animal/análise , Rúmen/metabolismo , Amido/metabolismoRESUMO
Hindgut acidosis (HGA) may cause or contribute to the inflammatory state of transition dairy cows by compromising the intestinal barrier. Previous experiments isolating the effects of HGA on inflammatory metrics have generated inconsistent results, which may be explained by acclimation to low- versus high-starch diets. Thus, study objectives were to evaluate the effects of HGA in cows acclimated to a high-fiber diet. Ten rumen-cannulated Holstein cows (38 ± 5 kg/d milk yield; 243 ± 62 d in milk; 1.6 ± 1.1 parity; 663 ± 57 kg of body weight) were enrolled in a study with 2 experimental periods (P). Before P1, all cows were acclimated to a high-fiber, low-starch diet (50% neutral detergent fiber, 15% starch) for 17 d. During P1 (4 d), baseline data were collected for use as covariates. During P2 (7 d), cows were assigned to 1 of 2 abomasal infusion treatments: (1) control (CON; 1.5 L of H2O/infusion; n = 4) or (2) starch infused (ST; 1 kg of corn starch + 1.5 L of H2O/infusion; n = 6). All cows were infused with their respective treatments every 6 h daily at 0000, 0600, 1200, and 1800 h, such that ST cows received a total of 4 kg of corn starch/d. Starch infusions successfully induced HGA, as indicated by a marked decrease in fecal pH (1.2 units) relative to CON. However, in contrast to our assumptions, infusing starch had no deleterious effects on milk yield, energy-corrected milk, or voluntary dry matter intake during P2. Milk protein, lactose, their yields, fat yield, and somatic cell score remained unaffected by starch infusions, whereas milk fat content and urea nitrogen were decreased in ST relative to CON (8 and 17%, respectively). Overall, circulating glucose and ß-hydroxybutyrate concentrations remained similar between treatments, but starch infusions decreased nonesterified fatty acids on d 3 relative to CON. Blood urea nitrogen decreased throughout P2 in ST (38%) relative to CON. In contrast to our hypothesis, HGA did not alter circulating serum amyloid A or lipopolysaccharide binding protein, nor did it affect rectal temperature. In summary, HGA moderately altered metabolism but did not affect production or elicit an inflammatory response in lactating dairy cows previously acclimated to a high-fiber diet.
Assuntos
Doenças dos Bovinos , Lactação , Gravidez , Feminino , Bovinos , Animais , Lactação/fisiologia , Leite/química , Dieta/veterinária , Amido/metabolismo , Inflamação/veterinária , Inflamação/metabolismo , Rúmen/metabolismo , Ração Animal/análise , Doenças dos Bovinos/metabolismoRESUMO
Study objectives were to evaluate the effects of hindgut acidosis (HGA) on production, metabolism, and inflammation in feed-restricted (FR) dairy cows. Twelve rumen-cannulated cows were enrolled in a study with 3 experimental periods (P). During P1 (5 d), baseline data were collected. During P2 (2 d), all cows were FR to 40% of their baseline feed intake. During P3 (4 d), cows remained FR and were assigned to 1 of 2 abomasal infusion treatments: (1) control (FR-CON; 6 L of H2O/d; n = 6) or (2) starch (FR-ST; 4 kg of corn starch + 6 L of H2O/d; n = 6). Respective treatments were partitioned into 4 equal doses (1 kg of corn starch/infusion) and were abomasally infused daily at 0000, 0600, 1200, and 1800 h. All 3 P were analyzed independently and the effects of treatment, time, and treatment × time were assessed using PROC MIXED, and P1 and P2 data were analyzed using the treatments cows were destined to be assigned to during P3. Hallmark production and metabolic responses to feed restriction were observed in both treatments, including decreased milk yield (39%) and energy-corrected milk (32%), circulating glucose (12%), insulin (71%), and increased circulating nonesterified fatty acids (3.2-fold) throughout both P2 and P3, relative to P1. However, despite a marked reduction in fecal pH (0.96 units), the aforementioned metrics were unaltered by HGA. During P3, starch infusions increased circulating ß-hydroxybutyrate, with the most pronounced increase occurring on d 2 (81% relative to FR-CON). Further, feed restriction decreased blood urea nitrogen during P2 (17% relative to P1) in both treatments, and this was exacerbated by starch infusions during P3 (31% decrease relative to FR-CON). In contrast to our hypothesis, neither feed restriction nor HGA increased circulating acute-phase proteins (serum amyloid A and lipopolysaccharide binding protein) relative to P1 or FR-CON, respectively. Thus, despite marked reductions in fecal pH, prior feed restriction did not appear to increase the susceptibility to HGA.
Assuntos
Dieta , Lactação , Feminino , Bovinos , Animais , Dieta/veterinária , Leite/metabolismo , Biomarcadores/metabolismo , Amido/metabolismo , Ração Animal/análise , Rúmen/metabolismoRESUMO
Previous stressors and systemic inflammation may increase the intestine's susceptibility to hindgut acidosis (HGA). Therefore, our experimental objectives were to evaluate the effects of isolated HGA on metabolism, production, and inflammation in simultaneously immune-activated lactating cows. Twelve rumen-cannulated Holstein cows (118 ± 41 d in milk; 1.7 ± 0.8 parity) were enrolled in a study with 3 experimental periods (P). Baseline data were collected during P1 (5 d). On d 1 of P2 (2 d), all cows received an i.v. lipopolysaccharide (LPS) bolus (0.2 µg/kg of body weight; BW). During P3 (4 d), cows were randomly assigned to 1 of 2 abomasal infusion treatments: (1) control (LPS-CON; 6 L of H2O/d; n = 6) or (2) starch infused (LPS-ST; 4 kg of corn starch + 6 L of H2O/d; n = 6). Treatments were allocated into 4 equal doses (1.5 L of H2O or 1 kg of starch and 1.5 L of H2O, respectively) and administered at 0000, 0600, 1200, and 1800 h daily. Additionally, both treatments received i.v. LPS on d 1 and 3 of P3 (0.8 and 1.6 µg/kg of BW, respectively) to maintain an inflamed state. Effects of treatment, time, and their interaction were assessed. Repeated LPS administration initiated and maintained an immune-activated state, as indicated by increased circulating white blood cells (WBC), serum amyloid A (SAA), and LPS-binding protein (LBP) during P2 and P3 (29%, 3-fold, and 50% relative to P1, respectively) for both abomasal infusion treatments. Regardless of abomasal treatment, milk yield and dry matter intake were decreased throughout P2 and P3 but with lesser severity following each LPS challenge (54, 44, and 37%, and 49, 42, and 40% relative to baseline on d 1 of P2, d 1 and d 3 of P3, respectively). As expected, starch infusions markedly decreased fecal pH (5.56 at nadir vs. 6.57 during P1) and increased P3 fecal starch relative to LPS-CON (23.7 vs. 2.4% of dry matter). Neither LPS nor starch infusions altered circulating glucose, insulin, nonesterified fatty acids, or ß-hydroxybutyrate, although LPS-ST cows had decreased blood urea nitrogen throughout P3 (16% relative to LPS-CON). Despite the striking reduction in fecal pH, HGA had no additional effect on circulating WBC, SAA, or LBP. Thus, in previously immune-activated dairy cows, HGA did not augment the inflammatory state, as indicated by a lack of perturbations in production, metabolism, and inflammatory biomarkers.
Assuntos
Doenças dos Bovinos , Lactação , Gravidez , Feminino , Bovinos , Animais , Dieta/veterinária , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Leite/metabolismo , Inflamação/veterinária , Rúmen/metabolismo , Doenças dos Bovinos/metabolismoRESUMO
Heat stress (HS) markedly affects postabsorptive energetics and protein metabolism. Circulating urea nitrogen increases in multiple species during HS and it has been traditionally presumed to stem from increased skeletal muscle proteolysis; however, this has not been empirically established. We hypothesized HS would increase activation of the calpain and proteasome systems as well as increase degradation of autophagosomes in skeletal muscle. To test this hypothesis, lactating dairy cows (~139 d in milk; parity ~2.4) were exposed to thermal neutral (TN) or HS conditions for 7 d (8 cows/environment). To induce HS, cattle were fitted with electric blankets for the duration of the heating period and the semitendinosus was biopsied on d 7. Heat stress increased rectal temperature (1.3°C) and respiratory rate (38 breaths per minute) while it decreased dry matter intake (34%) and milk yield (32%). Plasma urea nitrogen (PUN) peaked following 3 d (46%) and milk urea nitrogen (MUN) peaked following 4 d of environmental treatment and while both decreased thereafter, PUN and MUN remained elevated compared with TN (PUN: 20%; MUN: 27%) on d 7 of HS. Contrary to expectations, calpain I and II abundance and activation and calpain activity were similar between groups. Likewise, relative protein abundance of E3 ligases, muscle atrophy F-box protein/atrogin-1 and muscle ring-finger protein-1, total ubiquitinated proteins, and proteasome activity were similar between environmental treatments. Finally, autophagosome degradation was also unaltered by HS. Counter to our hypothesis, these results suggest skeletal muscle proteolysis is not increased following 7 d of HS and call into question the presumed dogma that elevated skeletal muscle proteolysis, per se, drives increased AA mobilization.
Assuntos
Lactação , Complexo de Endopeptidases do Proteassoma , Gravidez , Feminino , Bovinos , Animais , Lactação/fisiologia , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Calpaína/metabolismo , Calpaína/farmacologia , Leite/metabolismo , Resposta ao Choque Térmico , Músculo Esquelético/metabolismo , Ureia/metabolismo , Dieta/veterináriaRESUMO
Heat-stress-induced inflammation may be ameliorated by antioxidant supplementation due to the purported effects of increased production of reactive oxygen species or oxidative stress on the gastrointestinal tract barrier. Thus, study objectives were to evaluate whether antioxidant supplementation [AGRADO Plus 2.0 (AP); EW Nutrition] affects metabolism and inflammatory biomarkers in heat-stressed lactating dairy cows. Thirty-two mid-lactation multiparous Holstein cows were assigned to 1 of 4 dietary-environmental treatments: (1) thermoneutral (TN) conditions and fed a control diet (TN-CON; n = 8), (2) TN and fed a diet with AP (10 g antioxidant; n = 8), (3) heat stress (HS) and fed a control diet (HS-CON; n = 8), or (4) HS and fed a diet with AP (HS-AP; n = 8). The trial consisted of a 23-d prefeeding phase and 2 experimental periods (P). Respective dietary treatments were top-dressed starting on d 1 of the prefeeding period and continued daily throughout the duration of the experiment. During P1 (4 d), baseline data were collected. During P2 (7 d), HS was artificially induced using an electric heat blanket (Thermotex Therapy Systems Ltd.). During P2, the effects of treatment, day, and treatment-by-day interaction were assessed using PROC MIXED of SAS (SAS Institute Inc.). Heat stress (treatments 3 and 4) increased rectal, vaginal, and skin temperatures (1.2°C, 1.1°C, and 2.0°C, respectively) and respiration rate (33 breaths per minute) relative to TN cows. As expected, HS decreased dry matter intake, milk yield, and energy-corrected milk yield (32%, 28%, and 28% from d 4 to 7, respectively) relative to TN. There were no effects of AP on body temperature indices or production. Milk fat, protein, and lactose concentrations remained unaltered by HS or AP; however, milk urea nitrogen was increased during HS regardless of AP supplementation (26% relative to TN). Circulating glucose remained unchanged by HS, AP, or time. Additionally, HS decreased circulating glucagon (29% from d 3 to 7 relative to TN), but there was no additional effect of AP. There was a tendency for nonesterified fatty acid concentrations to be increased in HS-AP cows throughout P2 (60% relative to TN-CON), whereas it remained similar in all other treatments. Blood urea nitrogen increased for both HS treatments from d 1 to 3 before steadily decreasing from d 5 to 7, with the overall increase being most pronounced in HS-CON cows (27% relative to TN-CON). Further, supplementing AP decreased blood urea nitrogen in HS-AP on d 3 relative to HS-CON (15%). Circulating serum amyloid A tended to be and lipopolysaccharide binding protein was increased by HS, but neither acute-phase protein was affected by AP. Overall, AP supplementation appeared to marginally alter metabolism but did not meaningfully alter inflammation during HS.
Assuntos
Doenças dos Bovinos , Transtornos de Estresse por Calor , Animais , Bovinos , Feminino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Doenças dos Bovinos/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico , Lactação , Leite/metabolismoRESUMO
Postruminal intestinal barrier dysfunction caused by excessive hindgut fermentation may be a source of peripheral inflammation in dairy cattle. Therefore, the study objectives were to evaluate the effects of isolated hindgut acidosis on metabolism, inflammation, and production in lactating dairy cows. Five rumen-cannulated lactating Holstein cows (32.6 ± 7.2 kg/d of milk yield, 242 ± 108 d in milk; 642 ± 99 kg of body weight; 1.8 ± 1.0 parity) were enrolled in a study with 2 experimental periods (P). During P1 (4 d), cows were fed ad libitum a standard lactating cow diet (26% starch dry matter) and baseline data were collected. During P2 (7 d), all cows were fed the same diet ad libitum and abomasally infused with 4 kg/d of pure corn starch (1 kg of corn starch + 1.25 L of H2O/infusion at 0600, 1200, 1800, and 0000 h). Effects of time (hour relative to the first infusion or day) relative to P1 were evaluated using PROC MIXED in SAS (version 9.4; SAS Institute Inc.). Infusing starch markedly reduced fecal pH (5.84 vs. 6.76) and increased fecal starch (2.2 to 9.6% of dry matter) relative to baseline. During P2, milk yield, milk components, energy-corrected milk yield, and voluntary dry matter intake remained unchanged. At 14 h, plasma insulin and ß-hydroxybutyrate increased (2.4-fold and 53%, respectively), whereas circulating glucose concentrations remained unaltered. Furthermore, blood urea nitrogen increased at 2 h (23%) before promptly decreasing below baseline at 14 h (13%). Nonesterified fatty acids tended to decrease from 2 to 26 h (40%). Circulating white blood cells and neutrophils increased on d 4 (36 and 73%, respectively) and somatic cell count increased on d 5 (4.8-fold). However, circulating serum amyloid A and lipopolysaccharide-binding protein concentrations were unaffected by starch infusions. Despite minor changes in postabsorptive energetics and leukocyte dynamics, abomasal starch infusions and the subsequent hindgut acidosis had little or no meaningful effects on biomarkers of immune activation or production variables.
Assuntos
Doenças dos Bovinos , Lactação , Gravidez , Feminino , Bovinos , Animais , Leite/metabolismo , Dieta/veterinária , Inflamação/veterinária , Inflamação/metabolismo , Amido/metabolismo , Fermentação , Rúmen/metabolismo , Doenças dos Bovinos/metabolismoRESUMO
Subacute rumen acidosis may cause postruminal intestinal barrier dysfunction, but this does not appear to be due to increased hindgut fermentation. Alternatively, intestinal hyperpermeability may be explained by the plethora of potentially harmful substances (e.g., ethanol, endotoxin, and amines) produced in the rumen during subacute rumen acidosis, which are difficult to isolate in traditional in vivo experiments. Therefore, objectives were to evaluate whether abomasal infusion of acidotic rumen fluid collected from donor (Donor) cows elicits systemic inflammation or alters metabolism or production in healthy recipients. Ten rumen-cannulated lactating dairy cows [249 ± 63 d in milk; 753 ± 32 kg of body weight (BW)] were randomly assigned to 1 of 2 abomasal infusion treatments: (1) healthy rumen fluid (HF; 5 L/h; n = 5) or (2) acidotic rumen fluid (AF; 5 L/h; n = 5) infused. Eight rumen-cannulated cows [4 dry, 4 lactating (lactating = 391 ± 220 d in milk); 760 ± 70 kg of BW] were used as Donor cows. All 18 cows were acclimated to a high-fiber diet (46% neutral detergent fiber; 14% starch) during an 11-d prefeeding period during which rumen fluid was collected for the eventual infusion into HF cows. During period (P) 1 (5 d), baseline data were obtained and on d 5 Donor were corn-challenged (2.75% BW ground corn after 16 h of 75% feed restriction). Cows were fasted until 36 h relative to rumen acidosis induction (RAI), and data were collected through 96 h RAI. At 12 h RAI, an additional 0.50% BW of ground corn was added, and acidotic fluid collections began (7 L/Donor every 2 h; 6 M HCl was added to collected fluid until pH was between 5.0 and 5.2). On d 1 of P2 (4 d), HF/AF cows were abomasally infused with their respective treatments for 16 h, and data were collected for 96 h relative to the first infusion. Data were analyzed in SAS (SAS Institute Inc.) using PROC MIXED. Following the corn challenge in the Donor cows, rumen pH only mildly decreased at nadir (pH = 5.64 at 8 h RAI) and remained above the desired threshold for both acute (5.2) and subacute (5.6) acidosis. In contrast, fecal and blood pH markedly decreased to acidotic levels (nadir = 4.65 and 7.28 at 36 and 30 h RAI, respectively), and fecal pH remained below 5 from 22 to 36 h RAI. In Donor cows, dry matter intake remained decreased through d 4 (36% relative to baseline) and serum amyloid A and lipopolysaccharide-binding protein markedly increased by 48 h RAI in Donor cows (30- and 3-fold, respectively). In cows that received the abomasal infusions, fecal pH decreased in AF from 6 to 12 h relative to the first infusion (7.07 vs. 6.33) compared with HF; however, milk yield, dry matter intake, energy-corrected milk, rectal temperature, serum amyloid A, and lipopolysaccharide-binding protein were unaffected. Overall, the corn challenge did not cause subacute rumen acidosis but markedly decreased fecal and blood pH and stimulated a delayed inflammatory response in the Donor cows. Abomasal infusion of rumen fluid from corn-challenged Donor cows decreased fecal pH but did not cause inflammation, nor did it create an immune-activated phenotype in recipient cows.
Assuntos
Acidose , Doenças dos Bovinos , Feminino , Bovinos , Animais , Lactação/fisiologia , Dieta/veterinária , Zea mays/metabolismo , Rúmen/metabolismo , Proteína Amiloide A Sérica/metabolismo , Leite/química , Acidose/veterinária , Acidose/metabolismo , Biomarcadores/análise , Fermentação , Ração Animal/análise , Doenças dos Bovinos/metabolismoRESUMO
The study objective was to evaluate the effects of a phytogenic feed additive (PFA) on dry matter intake (DMI), average daily gain (ADG), inflammation, and oxidative stress markers of heifer calves exposed to a heat stress bout in the summer. A total of18 Holstein and 4 Jersey heifer calves (192 ± 5 kg of body weight at 162 ± 16 d of age) housed in indoor stalls were assigned to 1 of 2 dietary treatments (n = 11; 9 Holstein and 2 Jersey): (1) a basal total mixed ration (CTL), and (2) CTL top-dressed with 0.25 g/d of PFA. Following 7 d of acclimation, baseline measurements were made over 7 d under regular summer conditions [average temperature-humidity index (THI) = 79 from 0900 to 2000 h, and 75 from 2000 to 0900 h]. Calves were then subjected to a 7-d cyclic heat stress bout (HS) by turning on barn heaters and increasing the barn temperature to 33.0°C only during the daytime (the average THI = 85 from 0900 to 2000 h). The study continued for an extra 4-d period after HS ended (post-HS). The HS increased rectal temperature, skin temperature, and respiration rate from the baseline by 1.0°C, 4.0°C, and 49 breaths/min, respectively. The drinking water intake increased by 32% in response to HS, and calves continued to consume more water (44%) than the baseline consumption even after HS ended. The treatment × time interactions were not significant for feed intake, ADG, partial pressure of O2 in the blood, and blood concentrations of inflammation markers such as haptoglobin and lipopolysaccharide binding protein (LBP), and antioxidant markers such as protein carbonyl and thiobarbituric acid (TBARS). The PFA tended to increase daytime DMI (0.24 kg/d) compared with CTL throughout the experiment but did not affect ADG, which decreased from 1.12 kg/d to 0.26 kg/d in response to HS. Both DMI (13%) and ADG (85%) increased during post-HS relative to baseline, indicating compensatory performances that were not affected by the PFA. Serum haptoglobin and plasma LBP concentrations of PFA calves were 44% and 38% lower than that of CTL calves across all time points. The PFA decreased O2 pressure and tended to decrease protein carbonyl concentration in the blood across all time points. The PFA tended to decrease TBARS concentration on the first day of HS and increase and decrease the ratio of reduced to oxidized glutathione in the blood during the baseline and post-HS periods, respectively. Despite the lack of growth improvements, feeding PFA seems to increase O2 levels in the blood and alleviate oxidative stress and inflammation of heifer calve exposed to diurnal heat waves (~7 d) in the summer.
Assuntos
Doenças dos Bovinos , Transtornos de Estresse por Calor , Bovinos , Animais , Feminino , Haptoglobinas , Substâncias Reativas com Ácido Tiobarbitúrico , Desmame , Ingestão de Alimentos , Transtornos de Estresse por Calor/veterinária , Inflamação/veterináriaRESUMO
Objectives were to evaluate the effects of Bacillus subtilis PB6 (BSP) on gastrointestinal tract permeability, metabolism, inflammation, and production parameters in periparturient Holstein cows. Multiparous cows (n = 48) were stratified by previous 305-d mature equivalent milk yield and parity and assigned to 1 of 2 top-dressed dietary treatments 21 d before expected calving through 63 DIM: (1) control (CON; 13 g/d calcium carbonate; n = 24) or (2) BSP (13 g/d BSP; CLOSTAT, Kemin Industries, Des Moines, IA; n = 24). Gastrointestinal tract permeability was evaluated in vivo using the oral paracellular marker chromium (Cr)-EDTA. Effects of treatment, time, and treatment × time were assessed using PROC MIXED of SAS version 9.4 (SAS Institute Inc.). Prepartum dry matter intake (DMI) was unaffected by treatment; however, BSP supplementation decreased postpartum DMI relative to CON (0.7 kg). Milk yield, energy-corrected milk (ECM), fat-corrected milk (FCM), and solids-corrected milk (SCM) increased in BSP cows compared with CON (1.6, 1.8, 1.6, and 1.5 kg, respectively). Decreased DMI and increased production collectively improved feed efficiency of milk yield, ECM, FCM, and SCM for BSP cows (6, 5, 5, and 5%, respectively). No treatment differences were observed for concentrations of milk fat, protein, total solids, somatic cell count, somatic cell score, body weight, or body condition score. Milk urea nitrogen concentrations decreased (5%), whereas milk protein and lactose yield increased (5 and 2%, respectively) with BSP supplementation. Prepartum fecal pH did not differ among treatments; conversely, postpartum fecal pH was increased with BSP supplementation (0.09 pH units). Prepartum fecal dry matter percentage, starch, acetic acid, propionic acid, butyric acid, and ethanol did not differ among treatments. Postpartum concentrations of the aforementioned fecal parameters were also unaffected by treatment, but fecal propionic acid concentration was decreased (24%) in BSP cows relative to CON. Circulating glucose, nonesterified fatty acids, l-lactate, and insulin were similar between treatments both pre- and postpartum. Prepartum ß-hydroxybutyrate (BHB) did not differ between treatments, but postpartum BSP supplementation decreased (21%) circulating BHB relative to CON. Regardless of treatment, inflammatory markers (serum amyloid A and haptoglobin) peaked immediately following parturition and progressively decreased with time, but this pattern was not influenced by treatment. Postpartum lipopolysaccharide binding protein tended to be decreased on d 3 in BSP relative to CON cows (19%). Neither treatment nor time affected Cr-EDTA area under the curve. In summary, supplementing BSP had no detectable effects prepartum, but increased key postpartum production parameters. Bacillus subtilis PB6 consistently increased postpartum fecal pH and decreased fecal propionate concentrations but did not appear to have an effect on gastrointestinal tract permeability.
Assuntos
Bacillus subtilis , Lactação , Gravidez , Feminino , Bovinos , Animais , Propionatos , Ácido Edético , Período Pós-Parto/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Trato GastrointestinalRESUMO
Cashew nut shell extract (CNSE) is a byproduct of the cashew nut industry, containing bioactive compounds that alter rumen fermentation patterns. Therefore, study objectives were to evaluate the effects of CNSE (59% anacardic acid and 18% cardol) on production, rumen fermentation variables, metabolism, and inflammation in transition dairy cows. A total of 51 multiparous Holstein cows were used in a randomized design and assigned to treatment based on their previous 305-d mature equivalent milk and parity. Cows were assigned to 1 of 2 treatments 21 d before expected calving: (1) CON (control diet; n = 17) or (2) CNSE-5.0 (control diet and 5.0 g/d CNSE granule [containing 50% CNSE]; n = 34). Following parturition, 17 cows (preselected at initial treatment assignment) from the CNSE-5.0 treatment were reallocated into a third treatment group: CNSE-2.5 (control diet and 2.5 g/d CNSE granule; n = 17), resulting in 3 total treatments postpartum: (1) CON, (2) CNSE-2.5, and (3) CNSE-5.0. Prepartum rumen pH was unaltered by treatment; however, postpartum rumen pH was increased (0.31 units) in CNSE cows relative to CON. Prepartum rumen ammonia N concentration tended to be decreased (34%) in CNSE-5.0 cows compared with CON, and there tended to be a quadratic effect on postpartum ammonia N, as it was decreased in CNSE-2.5 compared with CON and CNSE-5.0. Prepartum dry matter intake (DMI) was unaffected by treatment; however, postpartum DMI was increased (8%) in CNSE cows relative to CON. No treatment differences were observed in pre- or postpartum digestibility measurements. Milk and protein yields from cows fed CNSE tended to be increased (6% and 7%, respectively) relative to CON. No treatment differences were detected for energy-corrected milk, feed efficiency, body weight, body condition score, energy balance, milk composition, milk urea nitrogen, or somatic cell count. Prepartum fecal pH decreased (0.12 units) in CNSE-5.0 cows relative to CON cows but was similar between treatments postpartum. Supplementing CNSE did not affect prepartum glucose, nonesterified fatty acids (NEFA), ß-hydroxybutyrate (BHB), or insulin. However, prepartum circulating blood urea nitrogen tended to be decreased and glucagon was decreased in CNSE-5.0 cows compared with CON (9 and 20%, respectively). Additionally, CNSE supplementation decreased glucose and insulin concentrations postpartum relative to CON cows (6% and 20%, respectively). Quadratic effects were detected for postpartum circulating NEFA and BHB such that their levels were increased in CNSE-2.5 cows relative to CON and CNSE-5.0. Pre- and postpartum circulating serum amyloid A, lipopolysaccharide-binding protein, and haptoglobin were unaffected by treatment. Overall, CNSE influenced some key rumen fermentation variables, altered postabsorptive metabolism, and increased production parameters in transition dairy cows.
Assuntos
Anacardium , Insulinas , Gravidez , Feminino , Bovinos , Animais , Lactação , Anacardium/metabolismo , Ácidos Graxos não Esterificados , Fermentação , Rúmen/metabolismo , Amônia/metabolismo , Nozes , Dieta/veterinária , Período Pós-Parto , Leite/química , Glucose/metabolismo , Suplementos NutricionaisRESUMO
Objectives were to evaluate effects of supplemental zinc hydroxychloride (HYD; Micronutrients, Indianapolis, IN) on gut permeability, metabolism, and inflammation during feed restriction (FR). Holstein cows (n = 24; 159 ± 8 d in milk; parity 3 ± 0.2) were enrolled in a 2 × 2 factorial design and randomly assigned to 1 of 4 treatments: (1) ad libitum fed (AL) and control diet (ALCON; 75 mg/kg Zn from zinc sulfate; n = 6); (2) ad libitum fed and HYD diet (ALHYD; 75 mg/kg Zn from HYD; n = 6); (3) 40% of ad libitum feed intake and control diet (FRCON; n = 6); or (4) 40% of ad libitum feed intake and HYD diet (FRHYD; n = 6). Prior to study initiation, cows were fed their respective diets for 21 d. The trial consisted of 2 experimental periods (P) during which cows continued to receive their respective dietary treatments. Period 1 (5 d) served as the baseline for P2 (5 d), during which cows were fed ad libitum or restricted to 40% of P1 feed intake. In vivo total-tract permeability was evaluated on d 4 of P1 and on d 2 and 5 of P2, using the paracellular permeability marker chromium (Cr)-EDTA. All cows were euthanized at the end of P2 to assess intestinal architecture. As anticipated, FR cows lost body weight (â¼46 kg), entered into calculated negative energy balance (-13.86 Mcal/d), and had decreased milk yield. Circulating glucose, insulin, and glucagon decreased, and nonesterified fatty acids and ß-hydroxybutyrate increased in FR relative to AL cows. Relative to AL cows, FR increased lipopolysaccharide-binding protein, serum amyloid A (SAA), and haptoglobin (Hp) concentrations (2-, 4-, and 17-fold, respectively); and peak SAA and Hp concentrations were observed on d 5. Circulating SAA and Hp from FRHYD tended to be decreased (47 and 61%, respectively) on d 5 relative to FRCON. Plasma Cr area under the curve increased (32%) in FR treatments on d 2 and tended to be increased (17%) on d 5 of P2 relative to AL treatments. No effects of diet were observed on Cr appearance. Relative to AL cows, FR increased jejunum villus width and decreased jejunum crypt depth and ileum villus height and crypt depth. Relative to FRCON, ileum villus height tended to increase in FRHYD cows. Feed restriction tended to decrease jejunum and ileum mucosal surface area, but the decrease in the ileum was ameliorated by dietary HYD. In summary, FR induced gut hyperpermeability to Cr-EDTA, and feeding HYD appeared to benefit some key metrics of barrier integrity.
Assuntos
Suplementos Nutricionais/análise , Ácido Edético/metabolismo , Inflamação/veterinária , Leite/metabolismo , Zinco/administração & dosagem , Ácido 3-Hidroxibutírico/metabolismo , Animais , Biomarcadores/metabolismo , Peso Corporal , Bovinos , Dieta/veterinária , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Feminino , Glucose/metabolismo , Insulina/sangue , Mucosa Intestinal/efeitos dos fármacos , Lactação , Paridade , GravidezRESUMO
The objective of this study was to evaluate the effects of supplementing a Saccharomyces cerevisiae fermentation product (SCFP) on body temperature indices, metabolism, acute phase protein response, and production variables during heat stress (HS). Twenty multiparous lactating Holstein cows (body weight = 675 ± 12 kg; days in milk = 144 ± 5; and parity = 2.3 ± 0.1) were used in an experiment conducted in 2 replicates (10 cows/replicate). Cows were randomly assigned to 1 of 2 dietary treatments: control diet (CON; n = 10) or the CON diet supplemented with 19 g/d of SCFP (n = 10; NutriTek, Diamond V, Cedar Rapids, IA). Cows were fed their respective diets for 21 d before initiation of the study. The experiment consisted of 2 periods: thermoneutral (period 1; P1) and heat stress (period 2; P2). During P1 (4 d), cows were fed ad libitum and housed in thermoneutral conditions for collecting baseline data. During P2 (7 d), HS was artificially induced using an electric heat blanket (EHB; Thermotex Therapy Systems Ltd., Calgary, AB, Canada). Cows were fitted with the EHB for the entirety of P2. Rectal temperature, respiration rate, and skin temperature were obtained twice daily (0600 and 1800 h) during both periods. Overall, HS increased rectal temperature, skin temperature, and respiration rate (1.4°C, 4.8°C, and 54 breaths/min, respectively) relative to P1, but no dietary treatment differences were detected. Compared with P1, HS decreased dry matter intake and milk yield (36 and 26%, respectively), and the reductions were similar between dietary treatments. Relative to P1, HS increased milk fat content and milk urea nitrogen (17 and 30%, respectively) and decreased milk protein and lactose contents (7 and 1.4%, respectively). Overall, HS increased (52%) plasma cortisol concentrations of CON, but circulating cortisol did not change in SCFP-fed cows. Heat stress increased circulating lipopolysaccharide binding protein and serum amyloid A (SAA; 2- and 4-fold, respectively), and SCFP supplementation tended to decrease peak SAA (â¼33%) relative to CON cows. Overall, although HS did not influence circulating white blood cells and neutrophils, SCFP increased circulating white blood cells and neutrophils by 9 and 26%, respectively, over CON in P2. In conclusion, HS initiated an acute phase protein response and feeding SCFP blunted the cortisol and SAA concentrations and altered some key leukocyte dynamics during HS.
Assuntos
Ração Animal , Doenças dos Bovinos/terapia , Suplementos Nutricionais , Transtornos de Estresse por Calor/veterinária , Saccharomyces cerevisiae/metabolismo , Animais , Temperatura Corporal , Peso Corporal , Bovinos , Doenças dos Bovinos/metabolismo , Dieta/veterinária , Feminino , Fermentação , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/terapia , Lactação , Leite/metabolismo , Proteínas do Leite/metabolismo , Paridade , Gravidez , Taxa RespiratóriaRESUMO
Periparturient hypocalcemia is a common metabolic disorder and it is ostensibly associated with negative health and production outcomes. Acute infection also markedly decreases circulating Ca, but the reasons for and consequences of it on physiological and immunological parameters are unknown. Objectives were to evaluate the effects of maintaining eucalcemia on production, metabolic, and immune variables following an intravenous lipopolysaccharide (LPS) challenge. Twelve multiparous lactating Holstein cows (717 ± 20 kg of body weight; 176 ± 34 d in milk; parity 3 ± 0.2) were enrolled in a study containing 2 experimental periods (P); during P1 (3 d), cows consumed feed ad libitum and baseline values were obtained. At the initiation of P2 (4 d), cows were randomly assigned to 1 of 2 treatments: (1) LPS administered (LPS-Con; 0.5 µg/kg of body weight LPS; n = 6) or (2) LPS administered + eucalcemic clamp (LPS-Ca; 0.5 µg/kg of body weight LPS; Ca infusion; n = 6). Cows were fasted for the first 12 h during P2. After LPS administration, ionized Ca was determined every 15 min for 6 h and every 30 min for an additional 6 h and intravenous Ca infusion was adjusted in LPS-Ca cows to maintain eucalcemia. Blood ionized Ca was decreased 23% for the first 12 h postbolus in LPS-Con cows, and by design, Ca infusion prevented hypocalcemia. To maintain eucalcemia for the 12 h, 13.7 g of Ca was infused. The total Ca deficit (including Ca not secreted into milk) accumulated over the 12 h was 10.4 and 20.2 g for the LPS-Con and LPS-Ca treatments, respectively. Mild hyperthermia (0.8°C) occurred for â¼6 h post-LPS administration relative to P1. From 6 to 7 h postbolus rectal temperature from LPS-Ca cows was increased (0.6°C) relative to LPS-Con cows. On d 1 of P2, milk yield decreased (61%) in both treatments relative to P1. Relative to LPS-Con cows, milk yield decreased (15%) in LPS-Ca cows during P2. Overall, circulating LPS-binding protein continuously increased postbolus, and at 24 h LPS-binding protein levels in LPS-Ca cows were increased (80%) relative to LPS-Con cows. During P2, serum amyloid A increased (4-fold) in both treatments relative to P1. Administering LPS initially decreased circulating neutrophils, then cell counts progressively increased with time. Calcium infusion decreased neutrophil counts (40%) from 9 to 12 h postbolus relative to LPS-Con cows. Neutrophil function, as assessed by oxidative burst and myeloperoxidase production, did not differ due to treatment. In summary, maintaining eucalcemia (via intravenous Ca infusion) during an immune challenge appeared to intensify inflammation and adversely affect lactation performance.
Assuntos
Cálcio/sangue , Cálcio/farmacologia , Bovinos , Lactação , Proteínas de Fase Aguda , Animais , Peso Corporal , Proteínas de Transporte/sangue , Contagem de Células/veterinária , Dieta/veterinária , Feminino , Imunidade , Lipopolissacarídeos/imunologia , Glicoproteínas de Membrana/sangue , Leite/metabolismo , Neutrófilos/imunologia , Paridade , GravidezRESUMO
The efficacy of an electric heat blanket (EHB) has previously been confirmed as an alternative method to evaluate heat stress (HS). However, a pair-feeding design has not been used with the EHB model. Therefore, study objectives were to determine the contribution of the nutritional plane to altered metabolism and productivity during EHB-induced HS. Multiparous Holstein cows (n = 18; 140 ± 10 d in milk) were subjected to 2 experimental periods (P); during P1 (4 d), cows were in thermoneutral conditions with ad libitum feed intake. During P2 (4 d), cows were assigned to 1 of 2 treatments: (1) thermoneutral conditions and pair-fed (PF; n = 8) or (2) EHB-induced HS with ad libitum feed intake (n = 10). Overall, the EHB increased rectal temperature, vaginal temperature, skin temperature, and respiration rate (1.4°C, 1.3°C, 0.8°C, and 42 breaths/min, respectively) relative to PF cows. The EHB reduced dry matter intake (DMI; 47%) and, by design, PF cows had a similar pattern and extent of decreased DMI. Milk yield decreased in EHB and PF cows by 27.3% (12.1 kg) and 13.4% (5.4 kg), respectively, indicating that reduced DMI accounted for only â¼50% of decreased milk synthesis. Milk fat content tended to increase (19%) in the EHB group, whereas in the PF cows it remained similar relative to P1. During P2, milk protein and lactose contents tended to decrease or decreased (1.3 and 2.2%, respectively) in both EHB and PF groups. Milk urea nitrogen remained unchanged in PF controls but increased (34.2%) in EHB cows relative to P1. The EHB decreased blood partial pressure of CO2, total CO2, HCO3, and base excess levels (17, 16, 17, and 81%, respectively) compared with those in PF cows. During P2, the EHB and PF cows had similar decreases (4%) in plasma glucose content, but no differences in circulating insulin were detected. However, a group by day interaction was detected for plasma nonesterified fatty acids; levels progressively increased in PF controls but remained unaltered in the EHB cows. Blood urea nitrogen increased in the EHB cows (61%) compared with the PF controls. In summary, utilizing the EHB model indicated that reduced nutrient intake explains only about 50% of the decrease in milk yield during HS, and the postabsorptive changes in nutrient partitioning are similar to those obtained in climate-controlled chamber studies. Consequently, the EHB is a reasonable and economically feasible model to study environmental physiology of dairy cows.
Assuntos
Bovinos/fisiologia , Ingestão de Alimentos , Ácidos Graxos não Esterificados/sangue , Resposta ao Choque Térmico , Proteínas do Leite/metabolismo , Leite/metabolismo , Animais , Roupas de Cama, Mesa e Banho/veterinária , Nitrogênio da Ureia Sanguínea , Dieta/veterinária , Feminino , Temperatura Alta , Insulina/sangue , Lactação , Leite/química , Proteínas do Leite/química , Taxa RespiratóriaRESUMO
Inflammation appears to be a predisposing factor and key component of hepatic steatosis in a variety of species. Objectives were to evaluate effects of inflammation [induced via intravenous lipopolysaccharide (LPS) infusion] on metabolism and liver lipid content in experimentally induced hyperlipidemic lactating cows. Cows (765 ± 32 kg of body weight; 273 ± 35 d in milk) were enrolled in 2 experimental periods (P); during P1 (5 d), baseline data were obtained. At the start of P2 (2 d), cows were assigned to 1 of 2 treatments: (1) intralipid plus control (IL-CON; 3 mL of saline; n = 5) or (2) intralipid plus LPS (IL-LPS; 0.375 µg of LPS/kg of body weight; n = 5). Directly following intravenous bolus (saline or LPS) administration, intralipid (20% fat emulsion) was intravenously infused continuously (200 mL/h) for 16 h to induce hyperlipidemia during which feed was removed. Blood samples were collected at -0.5, 0, 4, 8, 12, 16, 24, and 48 h relative to bolus administration, and liver biopsies were obtained on d 1 of P1 and at 16 and 48 h after the bolus. By experimental design (feed was removed during the first 16 h of d 1), dry matter intake decreased in both treatments on d 1 of P2, but the magnitude of reduction was greater in LPS cows. Dry matter intake of IL-LPS remained decreased on d 2 of P2, whereas IL-CON cows returned to baseline. Milk yield decreased in both treatments during P2, but the extent and duration was longer in LPS-infused cows. Administering LPS increased circulating LPS-binding protein (2-fold) at 8 h after bolus, after which it markedly decreased (84%) below baseline for the remainder of P2. Serum amyloid A concentrations progressively increased throughout P2 in IL-LPS cows (3-fold, relative to controls). Lipid infusion gradually increased nonesterified fatty acids and triglycerides in both treatments relative to baseline (3- and 2.5-fold, respectively). Interestingly, LPS infusion blunted the peak in nonesterified fatty acids, such that concentrations peaked (43%) higher in IL-CON compared with IL-LPS cows and heightened the increase in serum triglycerides (1.5-fold greater relative to controls). Liver fat content remained similar in IL-LPS relative to P1 at 16 h; however, hyperlipidemia alone (IL-CON) increased liver fat (36% relative to P1). No treatment differences in liver fat were observed at 48 h. In IL-LPS cows, circulating insulin increased markedly at 4 h after bolus (2-fold relative to IL-CON), and then gradually decreased during the 16 h of lipid infusion. Inducing inflammation with simultaneous hyperlipidemia altered the characteristic patterns of insulin and LPS-binding protein but did not cause fatty liver.