Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 212(3): 475-486, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117752

RESUMO

Macrophages represent the most abundant immune component of the tumor microenvironment and often exhibit protumorigenic (M2-like) phenotypes that contribute to disease progression. Despite their generally accepted protumorigenic role, macrophages can also display tumoricidal (or M1-like) behavior, revealing that macrophages can be functionally reprogrammed, depending on the cues received within the tumor microenvironment. Moreover, such plasticity may be achieved by pharmacologic or biologic interventions. To that end, we previously demonstrated that a novel immunomodulator termed the "very small size particle" (VSSP) facilitates maturation of dendritic cells and differentiation of myeloid-derived suppressor cells to APCs with reduced suppressive activity in cancer models. VSSP was further shown to act in the bone marrow to drive the differentiation of progenitors toward monocytes, macrophages, and dendritic cells during emergency myelopoiesis. However, the underlying mechanisms for VSSP-driven alterations in myeloid differentiation and function remained unclear. In this study, in mouse models, we focused on macrophages and tested the hypothesis that VSSP drives macrophages toward M1-like functional states via IRF8- and PU.1-dependent mechanisms. We further hypothesized that such VSSP-mediated actions would be accompanied by enhanced antitumor responses. Overall, we showed that (1) VSSP drives naive or M2-derived macrophages to M1-like states, (2) the M1-like state induced by VSSP occurs via IRF8- and PU.1-dependent mechanisms, and (3) single-agent VSSP induces an antitumor response that is accompanied by alterations in the intratumoral myeloid compartment. These results provide a deeper mechanistic underpinning of VSSP and strengthen its use to drive M1-like responses in host defense, including cancer.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Gangliosídeos , Macrófagos , Neoplasias/patologia , Fenótipo , Fatores Reguladores de Interferon , Microambiente Tumoral
2.
FASEB J ; 38(1): e23338, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038723

RESUMO

Tristetraprolin (TTP; also known as NUP475, GOS24, or TIS11), encoded by Zfp36, is an RNA-binding protein that regulates target gene expression by promoting mRNA decay and preventing translation. Although previous studies have indicated that TTP deficiency is associated with systemic inflammation and a catabolic-like skeletal phenotype, the mechanistic underpinnings remain unclear. Here, using both TTP-deficient (TTPKO) and myeloid-specific TTPKO (cTTPKO) mice, we reveal that global absence or loss of TTP in the myeloid compartment results in a reduced bone microarchitecture, whereas gain-of-function TTP knock-in (TTPKI) mice exhibit no significant loss of bone microarchitecture. Flow cytometry analysis revealed a significant immunosuppressive immune cell phenotype with increased monocytic myeloid-derived suppressor cells (M-MDSCs) in TTPKO and cTTPKO mice, whereas no significant changes were observed in TTPKI mice. Single-cell transcriptomic analyses of bone marrow myeloid progenitor cell populations indicated a dramatic increase in early MDSC marker genes for both cTTPKO and TTPKO bone marrow populations. Consistent with these phenotypic and transcriptomic data, in vitro osteoclastogenesis analysis of bone marrow M-MDSCs from cTTPKO and TTPKO displayed enhanced osteoclast differentiation and functional capacity. Focused transcriptomic analyses of differentiated M-MDSCs showed increased osteoclast-specific transcription factors and cell fusion gene expression. Finally, functional data showed that M-MDSCs from TTP loss-of-function mice were capable of osteoclastogenesis and bone resorption in a context-dependent manner. Collectively, these findings indicate that TTP plays a central role in regulating osteoclastogenesis through multiple mechanisms, including induction of M-MDSCs that appear to regulate skeletal phenotype.


Assuntos
Células Supressoras Mieloides , Tristetraprolina , Animais , Camundongos , Osteoclastos/metabolismo , Osteogênese , Fenótipo , Tristetraprolina/genética
3.
Breast Cancer Res ; 26(1): 75, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720366

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) are a prominent immune subpopulation in the tumor microenvironment that could potentially serve as therapeutic targets for breast cancer. Thus, it is important to characterize this cell population across different tumor subtypes including patterns of association with demographic and prognostic factors, and breast cancer outcomes. METHODS: We investigated CD163+ macrophages in relation to clinicopathologic variables and breast cancer outcomes in the Women's Circle of Health Study and Women's Circle of Health Follow-up Study populations of predominantly Black women with breast cancer. We evaluated 611 invasive breast tumor samples (507 from Black women, 104 from White women) with immunohistochemical staining of tissue microarray slides followed by digital image analysis. Multivariable Cox proportional hazards models were used to estimate hazard ratios for overall survival (OS) and breast cancer-specific survival (BCSS) for 546 cases with available survival data (median follow-up time 9.68 years (IQR: 7.43-12.33). RESULTS: Women with triple-negative breast cancer showed significantly improved OS in relation to increased levels of tumor-infiltrating CD163+ macrophages in age-adjusted (Q3 vs. Q1: HR = 0.36; 95% CI 0.16-0.83) and fully adjusted models (Q3 vs. Q1: HR = 0.30; 95% CI 0.12-0.73). A similar, but non-statistically significant, association was observed for BCSS. Macrophage infiltration in luminal and HER2+ tumors was not associated with OS or BCSS. In a multivariate regression model that adjusted for age, subtype, grade, and tumor size, there was no significant difference in CD163+ macrophage density between Black and White women (RR = 0.88; 95% CI 0.71-1.10). CONCLUSIONS: In contrast to previous studies, we observed that higher densities of CD163+ macrophages are independently associated with improved OS and BCSS in women with invasive triple-negative breast cancer. Trial registration Not applicable.


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Receptores de Superfície Celular , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Humanos , Feminino , Microambiente Tumoral/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Pessoa de Meia-Idade , Receptores de Superfície Celular/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Seguimentos , Prognóstico , Adulto , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Idoso , Biomarcadores Tumorais/metabolismo , Modelos de Riscos Proporcionais
4.
J Immunol ; 207(5): 1298-1309, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34362833

RESUMO

Intralesional therapy is a promising approach for remodeling the immunosuppressive tumor microenvironment while minimizing systemic toxicities. A combinatorial in situ immunomodulation (ISIM) regimen with intratumoral administration of Fms-like tyrosine kinase 3 ligand (Flt3L), local irradiation, and TLR3/CD40 stimulation induces and activates conventional type 1 dendritic cells in the tumor microenvironment and elicits de novo adaptive T cell immunity in poorly T cell-inflamed tumors. However, the impact of ISIM on myeloid-derived suppressor cells (MDSCs), which may promote treatment resistance, remains unknown. In this study, we examined changes in the frequencies and heterogeneity of CD11b+Ly-6CloLy-6G+ polymorphonuclear (PMN)-MDSCs and CD11b+Ly-6ChiLy-6G- monocytic (M)-MDSCs in ISIM-treated tumors using mouse models of triple-negative breast cancer. We found that ISIM treatment decreased intratumoral PMN-MDSCs, but not M-MDSCs. Although the frequency of M-MDSCs remained unchanged, ISIM caused a substantial reduction of CX3CR1+ M-MDSCs that express F4/80. Importantly, these ISIM-induced changes in tumor-residing MDSCs were not observed in Batf3-/- mice. ISIM upregulated PD-L1 expression in both M-MDSCs and PMN-MDSCs and synergized with anti-PD-L1 therapy. Furthermore, ISIM increased the expression of IFN regulatory factor 8 (IRF8) in myeloid cells, a known negative regulator of MDSCs, indicating a potential mechanism by which ISIM decreases PMN-MDSC levels. Accordingly, ISIM-mediated reduction of PMN-MDSCs was not observed in mice with conditional deletion of IRF8 in myeloid cells. Altogether, these findings suggest that ISIM holds promise as a multimodal intralesional therapy to alter both lymphoid and myeloid compartments of highly aggressive poorly T cell-inflamed, myeloid-enriched tumors resistant to anti-PD-L1 therapy.


Assuntos
Células Dendríticas/imunologia , Imunoterapia/métodos , Fatores Reguladores de Interferon/metabolismo , Neoplasias Mamárias Animais/terapia , Proteínas de Membrana/uso terapêutico , Células Supressoras Mieloides/imunologia , Linfócitos T/imunologia , Animais , Antígeno B7-H1 , Fatores de Transcrição de Zíper de Leucina Básica/genética , Antígenos CD40/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Resistência a Medicamentos , Regulação da Expressão Gênica , Humanos , Injeções Intralesionais , Fatores Reguladores de Interferon/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Radioterapia , Proteínas Repressoras/genética , Receptor 3 Toll-Like/metabolismo , Microambiente Tumoral
5.
Proc Natl Acad Sci U S A ; 117(38): 23721-23729, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900949

RESUMO

Clinical studies combining radiation and immunotherapy have shown promising response rates, strengthening efforts to sensitize tumors to immune-mediated attack. Thus, there is an ongoing surge in trials using preconditioning regimens with immunotherapy. Yet, due to the scarcity of resected tumors treated in situ with radiotherapy, there has been little investigation of radiation's sole contributions to local and systemic antitumor immunity in patients. Without this access, translational studies have been limited to evaluating circulating immune subsets and systemic remodeling of peripheral T cell receptor repertoires. This constraint has left gaps in how radiation impacts intratumoral responses and whether tumor-resident T cell clones are amplified following treatment. Therefore, to interrogate the immune impact of radiation on the tumor microenvironment and test the hypothesis that radiation initiates local and systemic expansion of tumor-resident clones, we analyzed renal cell carcinomas from patients treated with stereotactic body radiation therapy. Transcriptomic comparisons were evaluated by bulk RNA sequencing. T cell receptor sequencing monitored repertoires during treatment. Pathway analysis showed radiation-specific enrichment of immune-related processes, and T cell receptor sequencing revealed increased clonality in radiation-treated tumors. The frequency of identified, tumor-enriched clonotypes was tracked across serial blood samples. We observed increased abundance of tumor-enriched clonotypes at 2 wk postradiation compared with pretreatment levels; however, this expansion was not sustained, and levels contracted toward baseline by 4 wk posttreatment. Taken together, these results indicate robust intratumoral immune remodeling and a window of tumor-resident T cell expansion following radiation that may be leveraged for the rational design of combinatorial strategies.


Assuntos
Carcinoma de Células Renais/radioterapia , Neoplasias Renais/radioterapia , Radiocirurgia/efeitos adversos , Linfócitos T/efeitos da radiação , Transcriptoma/efeitos da radiação , Idoso , Carcinoma de Células Renais/patologia , Feminino , Humanos , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Microambiente Tumoral/efeitos da radiação
6.
Cancer Immunol Immunother ; 71(10): 2355-2369, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35166871

RESUMO

The ovarian tumor microenvironment (TME) is characterized by the accumulation of immunosuppressive tumor-associated macrophages (TAMs) and granulocytic cells. Very small size particles (VSSP), comprised of the ganglioside NAcGM3 and Neisseria meningitidis derived outer membrane vesicles, is being developed as a nanoparticulated modulator of innate immunity. Prior studies have shown that VSSP enhanced antigen-specific cytotoxic T cell responses and reduced the suppressive phenotype of splenic granulocytic cells in tumor-bearing mice. Here, we hypothesized that intraperitoneal VSSP would modify myeloid cell accumulation and phenotypes in the ovarian TME and abrogate suppressor function of TAMs and tumor-associated granulocytic cells. In the ID8 syngeneic model of epithelial ovarian cancer, VSSP reduced peritoneal TAMs and induced M1-like polarization in TAMs. In addition, VSSP stimulated peritoneal inflammation characterized by increased granulocytes and monocytes, including inflammatory monocytic cells. VSSP treatment resulted in peritoneal TAMs and granulocytic cells being less suppressive of ex vivo stimulated CD8+ T cell responses. VSSP alone and combined with anti-PD-1 modestly but significantly prolonged survival in tumor-bearing mice. In addition, ex vivo treatment with VSSP induced M1-like polarization in TAMs from patients with metastatic ovarian cancer and variably abrogated their suppressor phenotype. VSSP treatment also partially abrogated the induction of suppressor function in healthy donor neutrophils exposed to ascites supernatants from patients with ovarian cancer. Together, these results point to VSSP reprogramming myeloid responses resulting in abrogation of suppressive pathways and raise the potential for administration of VSSP into the TME to enhance anti-tumor immunity.


Assuntos
Neoplasias Ovarianas , Macrófagos Associados a Tumor , Animais , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides , Microambiente Tumoral
7.
Blood ; 135(14): 1146-1160, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32040544

RESUMO

Increasing evidence suggests that platelets play a predominant role in colon and breast cancer metastasis, but the underlying molecular mechanisms remain elusive. Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin that triggers platelet activation through immunoreceptor tyrosine-based activation motif (ITAM) signaling and thereby regulates diverse functions, including platelet adhesion, aggregation, and procoagulant activity. GPVI has been proposed as a safe antithrombotic target, because its inhibition is protective in models of arterial thrombosis, with only minor effects on hemostasis. In this study, the genetic deficiency of platelet GPVI in mice decreased experimental and spontaneous metastasis of colon and breast cancer cells. Similar results were obtained with mice lacking the spleen-tyrosine kinase Syk in platelets, an essential component of the ITAM-signaling cascade. In vitro and in vivo analyses supported that mouse, as well as human GPVI, had platelet adhesion to colon and breast cancer cells. Using a CRISPR/Cas9-based gene knockout approach, we identified galectin-3 as the major counterreceptor of GPVI on tumor cells. In vivo studies demonstrated that the interplay between platelet GPVI and tumor cell-expressed galectin-3 uses ITAM-signaling components in platelets and favors the extravasation of tumor cells. Finally, we showed that JAQ1 F(ab')2-mediated inhibition of GPVI efficiently impairs platelet-tumor cell interaction and tumor metastasis. Our study revealed a new mechanism by which platelets promote the metastasis of colon and breast cancer cells and suggests that GPVI represents a promising target for antimetastatic therapies.


Assuntos
Plaquetas/patologia , Neoplasias da Mama/patologia , Neoplasias do Colo/patologia , Galectina 3/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Animais , Plaquetas/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Neoplasias do Colo/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Metástase Neoplásica/patologia , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/genética , Mapas de Interação de Proteínas
8.
Gut ; 70(1): 127-138, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32424005

RESUMO

OBJECTIVE: This study exploits the intersection between molecular-targeted therapies and immune-checkpoint inhibition to define new means to treat pancreatic cancer. DESIGN: Patient-derived cell lines and xenograft models were used to define the response to CDK4/6 and MEK inhibition in the tumour compartment. Impacts relative to immunotherapy were performed using subcutaneous and orthotopic syngeneic models. Single-cell RNA sequencing and multispectral imaging were employed to delineate effects on the immunological milieu in the tumour microenvironment. RESULTS: We found that combination treatment with MEK and CDK4/6 inhibitors was effective across a broad range of PDX models in delaying tumour progression. These effects were associated with stable cell-cycle arrest, as well as the induction of multiple genes associated with interferon response and antigen presentation in an RB-dependent fashion. Using single-cell sequencing and complementary approaches, we found that the combination of CDK4/6 and MEK inhibition had a significant impact on increasing T-cell infiltration and altering myeloid populations, while potently cooperating with immune checkpoint inhibitors. CONCLUSIONS: Together, these data indicate that there are canonical and non-canonical features of CDK4/6 and MEK inhibition that impact on the tumour and immune microenvironment. This combination-targeted treatment can promote robust tumour control in combination with immune checkpoint inhibitor therapy.


Assuntos
Carcinoma Ductal Pancreático/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia de Alvo Molecular , Neoplasias Pancreáticas/terapia , Animais , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Modelos Animais de Doenças , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Small ; 17(11): e2007165, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605054

RESUMO

Human papilloma virus (HPV)-16 is associated with cervical cancers and induces expression of the E6 and E7 oncogenes. Using a murine cell line that expresses these, the genes are sequenced, and six predicted major histocompatibility complex (MHC) class I (MHC-I) epitopes are identified. A liposomal vaccine adjuvant based on cobalt-porphyrin-phospholipid (CoPoP) is admixed with synthetic 9-mer epitopes appended with three histidine residues, resulting in rapid formation of peptide-liposome particles. Immunization with multivalent peptides leads to protection from tumor challenge. Of the peptides screened, only the previously identified E749-57 epitope is functional. The peptide-liposome particles that form upon mixing E7HHH49-57 with CoPoP liposomes are stable in serum and are avidly taken up by immune cells in vitro. Immunization results in robust protection from tumor challenge and re-challenge. A 100 ng peptide dose protects mice in a therapeutic tumor challenge when admixed with CoPoP liposomes, whereas 200-fold higher peptide doses are ineffective with the polyinosinic-polycytidylic (poly(I:C)) adjuvant. CoPoP induces a strong infiltrating CD8+ T-cell response within the tumor microenvironment with an improved functional profile. Vaccine monotherapy using nanogram dosing of the E7HHH49-57 peptide admixed with CoPoP reverses the growth of large established tumors, eradicating subcutaneous tumors upwards of 100 mm3 . Immunization also eradicates lung tumors in a metastasis model.


Assuntos
Vacinas Anticâncer , Infecções por Papillomavirus , Adjuvantes Imunológicos , Animais , Feminino , Humanos , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus/prevenção & controle , Peptídeos , Vacinação
10.
Cell Immunol ; 360: 104261, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33373817

RESUMO

Immunotherapy has become a major weapon against the war on cancer. This has culminated from decades of seminal work that led to the discovery of innovative approaches to drive adaptive immunity. Notably, was the discovery of immune checkpoint inhibitory receptors on T cells, and the subsequent development of monoclonal antibodies that target those receptors, known as immune checkpoint inhibitors (ICIs). Blocking those receptors using ICIs leads to sustained effector function, which has translated to enhanced antitumor responses across multiple human cancer types. However, these treatments are effective in subsets of patients, implicating significant barriers limiting therapeutic potential. While numerous mechanisms may hinder immunotherapy potency, one prominent mechanism is the production of myeloid-derived suppressor cells (MDSCs). MDSCs comprise monocytic and granulocytic cell types and mediate pro-tumorigenic and immune suppressive activities. Here, we summarize several pathways by which MDSCs arise in cancer, providing a conceptual framework for identifying unique combination therapeutic interventions.


Assuntos
Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neoplasias/patologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Carcinogênese/metabolismo , Granulócitos/imunologia , Humanos , Terapia de Imunossupressão/métodos , Imunoterapia/métodos , Monócitos/imunologia , Células Mieloides/imunologia , Neoplasias/imunologia , Microambiente Tumoral/imunologia
11.
Blood ; 133(25): 2696-2706, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30952674

RESUMO

Maintenance of tumor vasculature integrity is indispensable for tumor growth and thus affects tumor progression. Previous studies have identified platelets as major regulators of tumor vascular integrity, as their depletion selectively rendered tumor vessels highly permeable and caused massive intratumoral hemorrhage. While these results established platelets as potential targets for antitumor therapy, their depletion is not a treatment option due to their essential role in hemostasis. Thus, a detailed understanding of how platelets safeguard vascular integrity in tumors is urgently demanded. Here, we show for the first time that functional inhibition of glycoprotein VI (GPVI) on the platelet surface with an antibody (JAQ1) F(ab)2 fragment rapidly induces tumor hemorrhage and diminishes tumor growth similar to complete platelet depletion while not inducing systemic bleeding complications. The intratumor bleeding and tumor growth arrest could be reverted by depletion of Ly6G+ cells, confirming them to be responsible for the induction of bleeding and necrosis within the tumor. In addition, JAQ1 F(ab)2-mediated GPVI inhibition increased intratumoral accumulation of coadministered chemotherapeutic agents, such as Doxil and paclitaxel, thereby resulting in a profound antitumor effect. In summary, our findings identify platelet GPVI as a key regulator of vascular integrity specifically in growing tumors and could serve as a basis for the development of antitumor strategies based on the interference with platelet function.


Assuntos
Fragmentos Fab das Imunoglobulinas/farmacologia , Neoplasias Experimentais/patologia , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Animais , Feminino , Hemorragia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica
12.
Int J Cancer ; 147(8): 2279-2292, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32452014

RESUMO

Patients with metastatic breast cancer (MBC) have limited therapeutic options and novel treatments are critically needed. Prior research implicates tumor-induced mobilization of myeloid cell populations in metastatic progression, as well as being an unfavorable outcome in MBC; however, the underlying mechanisms for these relationships remain unknown. Here, we provide evidence for a novel mechanism by which p38 promotes metastasis. Using triple-negative breast cancer models, we showed that a selective inhibitor of p38 (p38i) significantly reduced tumor growth, angiogenesis, and lung metastasis. Importantly, p38i decreased the accumulation of myeloid populations, namely, myeloid-derived suppressor cells (MDSCs) and CD163+ tumor-associated macrophages (TAMs). p38 controlled the expression of tumor-derived chemokines/cytokines that facilitated the recruitment of protumor myeloid populations. Depletion of MDSCs was accompanied by reduced TAM infiltration and phenocopied the antimetastatic effects of p38i. Reciprocally, p38i increased tumor infiltration by cytotoxic CD8+ T cells. Furthermore, the CD163+ /CD8+ expression ratio inversely correlated with metastasis-free survival in breast cancer, suggesting that targeting p38 may improve clinical outcomes. Overall, our study highlights a previously unknown p38-driven pathway as a therapeutic target in MBC.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Mieloides/efeitos dos fármacos , Células Mieloides/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Células Mieloides/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptores de Superfície Celular/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
13.
J Immunol ; 198(10): 4129-4139, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28356386

RESUMO

Alterations in myelopoiesis are common across various tumor types, resulting in immature populations termed myeloid-derived suppressor cells (MDSCs). MDSC burden correlates with poorer clinical outcomes, credited to their ability to suppress antitumor immunity. MDSCs consist of two major subsets, monocytic and polymorphonuclear (PMN). Intriguingly, the latter subset predominates in many patients and tumor models, although the mechanisms favoring PMN-MDSC responses remain poorly understood. Ordinarily, lineage-restricted transcription factors regulate myelopoiesis that collectively dictate cell fate. One integral player is IFN regulatory factor (IRF)-8, which promotes monocyte/dendritic cell differentiation while limiting granulocyte development. We recently showed that IRF8 inversely controls MDSC burden in tumor models, particularly the PMN-MDSC subset. However, where IRF8 acts in the pathway of myeloid differentiation to influence PMN-MDSC production has remained unknown. In this study, we showed that: 1) tumor growth was associated with a selective expansion of newly defined IRF8lo granulocyte progenitors (GPs); 2) tumor-derived GPs had an increased ability to form PMN-MDSCs; 3) tumor-derived GPs shared gene expression patterns with IRF8-/- GPs, suggesting that IRF8 loss underlies GP expansion; and 4) enforced IRF8 overexpression in vivo selectively constrained tumor-induced GP expansion. These findings support the hypothesis that PMN-MDSCs result from selective expansion of IRF8lo GPs, and that strategies targeting IRF8 expression may limit their load to improve immunotherapy efficacy.


Assuntos
Células Precursoras de Granulócitos/fisiologia , Fatores Reguladores de Interferon/metabolismo , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/fisiopatologia , Células Supressoras Mieloides/fisiologia , Mielopoese , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Células Precursoras de Granulócitos/imunologia , Granulócitos/imunologia , Hematopoese , Humanos , Fatores Reguladores de Interferon/genética , Camundongos , Monócitos/imunologia , Células Mieloides/imunologia , Células Supressoras Mieloides/imunologia , Neutrófilos/imunologia
14.
Proc Natl Acad Sci U S A ; 113(7): E874-83, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831100

RESUMO

Activation of an anticancer innate immune response is highly desirable because of its inherent ability to generate an adaptive antitumor T-cell response. However, insufficient safety of innate immune modulators limits clinical use to topical applications. Toll-like receptor 5 (TLR5) agonists are favorably positioned as potential systemic immunotherapeutic agents because of unusual tissue specificity of expression, uniquely safe profile of induced cytokines, and antitumor efficacy demonstrated in a number of animal models. Here, we decipher the molecular and cellular events underlying the metastasis suppressive activity of entolimod, a clinical stage TLR5 agonist that activates NF-κB-, AP-1-, and STAT3-driven immunomodulatory signaling pathways specifically within the liver. Used as a single agent in murine colon and mammary metastatic cancer models, entolimod rapidly induces CXCL9 and -10 that support homing of blood-borne CXCR3-expressing NK cells to the liver predominantly through an IFN-γ signaling independent mechanism. NK cell-dependent activation of dendritic cells is followed by stimulation of a CD8(+) T-cell response, which exert both antimetastatic effect of entolimod and establishment of tumor-specific and durable immune memory. These results define systemically administered TLR5 agonists as organ-specific immunoadjuvants, enabling efficient antitumor vaccination that does not depend on identification of tumor-specific antigens.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Metástase Neoplásica/prevenção & controle , Peptídeos/farmacologia , Receptor 5 Toll-Like/agonistas , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Células Matadoras Naturais/imunologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
15.
J Allergy Clin Immunol ; 141(3): 1028-1035, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28606585

RESUMO

BACKGROUND: We evaluated the overall and site-specific incidence of cancer in subjects with primary immunodeficiency diseases (PIDD) enrolled in the United States Immune Deficiency Network (USIDNET) registry compared with age-adjusted cancer incidence in the Surveillance, Epidemiology and End Results Program (SEER) database. OBJECTIVE: We hypothesized that subjects with PIDD would have an increased incidence of cancer due to impaired immune function. METHODS: Overall and site-specific cancer incidence rates were evaluated in subjects with PIDD (n = 3658) enrolled in the USIDNET registry from 2003 to 2015 and compared with age-adjusted incidence rates in the SEER database. RESULTS: We observed a 1.42-fold excess relative risk of cancer in subjects with PIDD compared with the age-adjusted SEER population (P < .001). Men with PIDD had a 1.91-fold excess relative risk of cancer compared with the age-adjusted male population (P < .001), while women with PIDD had similar overall cancer rates compared with the age-adjusted female population. Of the 4 most common malignancies in men and women in SEER (lung, colon, breast, and prostate cancers), we found no significant increase in these diagnoses in subjects with PIDD. Significant increases in lymphoma in both men (10-fold increase, P < .001) and women (8.34-fold increase, P < .001) with PIDD were observed. CONCLUSIONS: Excess incidence of cancer occurred in subjects with PIDD. An excess of lymphoma in specific PIDD populations principally drove this increased incidence, while no increased risk of the most common solid tumor malignancies was observed. These data point to a restricted role of the immune system in protecting from specific cancers.


Assuntos
Síndromes de Imunodeficiência/epidemiologia , Neoplasias/epidemiologia , Programa de SEER , Adulto , Idoso , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Estados Unidos/epidemiologia
16.
Breast Cancer Res ; 20(1): 131, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367629

RESUMO

BACKGROUND: Amphiregulin (AREG), a ligand of the epidermal growth factor receptor, is not only essential for proper mammary ductal development, but also associated with breast cancer proliferation and growth. In the absence of AREG, mammary ductal growth is stunted and fails to expand. Furthermore, suppression of AREG expression in estrogen receptor-positive breast tumor cells inhibits in-vitro and in-vivo growth. METHODS: We crossed AREG-null (AREG-/-) mice with the murine luminal B breast cancer model, MMTV-PyMT (PyMT), to generate spontaneous breast tumors that lack AREG (AREG-/- PyMT). We evaluated tumor growth, cytokeratin-8 (K8)-positive luminal cells, cytokeratin-14 (K14)-positive myoepithelial cells, and expression of AREG, Ki67, and PyMT. Primary myoepithelial cells from nontumor-bearing AREG+/+ mice underwent fluorescence-activated cell sorting and were adapted to culture for in-vitro coculture studies with AT-3 cells, a cell line derived from C57Bl/6 PyMT mammary tumors. RESULTS: Intriguingly, PyMT-induced lesions progress more rapidly in AREG-/- mice than in AREG+/+ mice. Quantification of K8+ luminal and K14+ myoepithelial cells in non-PyMT AREG-/- mammary glands showed fewer K14+ cells and a thinner myoepithelial layer. Study of AT-3 cells indicated that coculture with myoepithelial cells or exposure to AREG, epidermal growth factor, or basic fibroblast growth factor can suppress PyMT expression. Late-stage AREG-/- PyMT tumors are significantly less solid in structure, with more areas of papillary and cystic growth. Papillary areas appear to be both less proliferative and less necrotic. In The Cancer Genome Atlas database, luminal-B invasive papillary carcinomas have lower AREG expression than luminal B invasive ductal carcinomas. CONCLUSIONS: Our study has revealed a previously unknown role of AREG in myoepithelial cell development and PyMT expression. AREG expression is essential for proper myoepithelial coverage of mammary ducts. Both AREG and myoepithelial cells can suppress PyMT expression. We find that lower AREG expression is associated with invasive papillary breast cancer in both the MMTV-PyMT model and human breast cancer.


Assuntos
Anfirregulina/metabolismo , Células Epiteliais/patologia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/patologia , Anfirregulina/genética , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais/virologia , Feminino , Humanos , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/virologia , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Invasividade Neoplásica/patologia , Polyomavirus/genética , Polyomavirus/imunologia
17.
Methods ; 112: 84-90, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582125

RESUMO

The transcription factor interferon regulatory factor-8 (IRF8) plays an essential role in myeloid differentiation and lineage commitment, based largely on molecular and genetic studies. The detection of IRF8 in specific cell populations by flow cytometry (FCM) has the potential to provide new insights into normal and pathologic myelopoiesis, but critical validation of this protein-based approach, particularly in human samples, is lacking. In this study, the assessment of total cellular IRF8 presence was compared to its specific nuclear presence as assessed by imaging flow cytometry (IFC) analysis. Peptide neutralization of the IRF8-specific antibody that has been predominantly used to date in the literature served as a negative control for the immunofluorescent labeling. Expression of total IRF8 was analyzed by total cellular fluorescence analogous to the mean fluorescence intensity readout of conventional FCM. Additionally, specific nuclear fluorescence and the similarity score between the nuclear image (DAPI) and the corresponding IRF8 image for each cell were analyzed as parameters for nuclear localization of IRF8. IFC showed that peptide blocking eliminated binding of the IRF8 antibody in the nucleus. It also reduced cytoplasmic binding of the antibody but not to the extent observed in the nucleus. In agreement with the similarity score data, the total cellular IRF8 as well as nuclear IRF8 intensities decreased with peptide blocking. In healthy donor peripheral blood subpopulations and a positive control cell line (THP-1), the assessment of IRF8 by total cellular presence correlated well with its specific nuclear presence and correlated with the known distribution of IRF8 in these cells. In clinical samples of myeloid-derived suppressors cells derived from patients with renal carcinoma, however, total cellular IRF8 did not necessarily correlate with its nuclear presence. Discordance was primarily associated with peptide blocking having a proportionally greater effect on the IRF8 nuclear localization versus total fluorescence assessment. The data thus indicate that IRF8 can have cytoplasmic presence and that during disease its nuclear-cytoplasmic distribution may be altered, which may provide a basis for potential myeloid defects during certain pathologies.


Assuntos
Carcinoma/genética , Núcleo Celular/genética , Citoplasma/genética , Hematopoese/genética , Fatores Reguladores de Interferon/genética , Neoplasias Renais/genética , Anticorpos/farmacologia , Carcinoma/imunologia , Carcinoma/patologia , Estudos de Casos e Controles , Diferenciação Celular , Núcleo Celular/imunologia , Núcleo Celular/ultraestrutura , Citoplasma/imunologia , Citoplasma/ultraestrutura , Citometria de Fluxo/métodos , Expressão Gênica , Hematopoese/imunologia , Humanos , Citometria por Imagem/métodos , Fatores Reguladores de Interferon/antagonistas & inibidores , Fatores Reguladores de Interferon/imunologia , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Células Mieloides , Peptídeos/farmacologia , Coloração e Rotulagem/métodos
18.
Cancer Immunol Immunother ; 66(8): 989-996, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28224211

RESUMO

Perturbations in myeloid cell differentiation are common in neoplasia, culminating in immature populations known as myeloid-derived suppressor cells (MDSCs). MDSCs favor tumor progression due to their ability to suppress host immunity or promote invasion and metastasis. They are thought to originate from the bone marrow as a result of exposure to stromal- or circulating tumor-derived factors (TDFs). Although great interest has been placed on understanding how MDSCs function, less is known regarding how MDSCs develop at a transcriptional level. Our work explores the premise that MDSCs arise because cancer cells, through the production of certain TDFs, inhibit the expression of interferon regulatory factor-8 (IRF8) that is ordinarily essential for controlling fundamental properties of myeloid cell differentiation. Our interest in IRF8 has been based on the following rationale. First, it is well-recognized that IRF8 is a 'master regulator' of normal myelopoiesis, critical not only for producing monocytes, dendritic cells (DCs), and neutrophils, but also for controlling the balance of all three major myeloid cell types. This became quite evident in IRF8-/- mice, whereby the loss of IRF8 leads to a disproportionate accumulation of neutrophils at the expense of monocytes and DCs. Second, we showed that such myeloid populations from IRF8-/- mice exhibit similar characteristics to MDSCs from tumor-bearing mice. Third, in a reciprocal fashion, we showed that enforced expression of IRF8 in the myeloid system significantly mitigates tumor-induced MDSC accumulation and improves immunotherapy efficacy. Altogether, these observations support the hypothesis that IRF8 is an integral negative regulator of MDSC biology.


Assuntos
Carcinogênese , Imunoterapia/métodos , Fatores Reguladores de Interferon/metabolismo , Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Neutrófilos/fisiologia , Evasão Tumoral , Animais , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/genética , Camundongos , Neoplasias/terapia
19.
J Immunol ; 194(5): 2369-79, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25646302

RESUMO

During hematopoiesis, hematopoietic stem cells constantly differentiate into granulocytes and macrophages via a distinct differentiation program that is tightly controlled by myeloid lineage-specific transcription factors. Mice with a null mutation of IFN regulatory factor 8 (IRF8) accumulate CD11b(+)Gr1(+) myeloid cells that phenotypically and functionally resemble tumor-induced myeloid-derived suppressor cells (MDSCs), indicating an essential role of IRF8 in myeloid cell lineage differentiation. However, IRF8 is expressed in various types of immune cells, and whether IRF8 functions intrinsically or extrinsically in regulation of myeloid cell lineage differentiation is not fully understood. In this study, we report an intriguing finding that, although IRF8-deficient mice exhibit deregulated myeloid cell differentiation and resultant accumulation of CD11b(+)Gr1(+) MDSCs, surprisingly, mice with IRF8 deficiency only in myeloid cells exhibit no abnormal myeloid cell lineage differentiation. Instead, mice with IRF8 deficiency only in T cells exhibited deregulated myeloid cell differentiation and MDSC accumulation. We further demonstrated that IRF8-deficient T cells exhibit elevated GM-CSF expression and secretion. Treatment of mice with GM-CSF increased MDSC accumulation, and adoptive transfer of IRF8-deficient T cells, but not GM-CSF-deficient T cells, increased MDSC accumulation in the recipient chimeric mice. Moreover, overexpression of IRF8 decreased GM-CSF expression in T cells. Our data determine that, in addition to its intrinsic function as an apoptosis regulator in myeloid cells, IRF8 also acts extrinsically to repress GM-CSF expression in T cells to control myeloid cell lineage differentiation, revealing a novel mechanism that the adaptive immune component of the immune system regulates the innate immune cell myelopoiesis in vivo.


Assuntos
Linhagem da Célula/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fatores Reguladores de Interferon/imunologia , Células Mieloides/imunologia , Mielopoese/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Proliferação de Células , Quimera , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Camundongos , Células Mieloides/citologia , Células Mieloides/efeitos dos fármacos , Mielopoese/efeitos dos fármacos , Mielopoese/genética , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/transplante
20.
Prostate ; 76(13): 1192-202, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27225803

RESUMO

INTRODUCTION: Transgenic mouse modeling is a favorable tool to reflect human prostate tumorigenesis and interactions between prostate cancer and the microenvironment. The use of GEMMs and derived cell lines represent powerful tools to study prostate cancer initiation and progression with an associated tumor microenvironment. Notably, such models provide the capacity for rapid preclinical therapy studies including immune therapies for prostate cancer treatment. METHODS: Backcrossing FVB Hi-MYC mice with C57BL/6N mice, we established a Hi-MYC transgenic mouse model on a C57BL/6 background (B6MYC). In addition, using a conditional reprogramming method, a novel C57BL/6 MYC driven prostate adenocarcinoma cell line was generated. RESULTS: Our results demonstrate that disease progression is significantly delayed in B6MYC when compared to their FVB counterparts. Current data also indicates infiltrating immune cells are present in pre-cancer lesions, prostate intraepithelial neoplasia (PIN). Further, immunophenotyping of this immune infiltrate demonstrates the predominant population as myeloid-derived suppressor cells (MDSC). Also, we successfully generated a B6MYC-CaP cell line, and determined that this new PCa cell line express markers of luminal epithelial lineage. DISCUSSION: This novel model of PCa provides a new platform to understand the cross talk between MYC driven prostate cancer and the microenvironment. Importantly, these models will be an ideal tool to support the clinical development of immunotherapy as well as other novel therapeutic strategies for prostate cancer treatment. Prostate 76:1192-1202, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Modelos Animais de Doenças , Progressão da Doença , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Microambiente Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA