Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Anim Ecol ; 89(8): 1978-1987, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32248534

RESUMO

Maintenance of phenotypic heterogeneity in the face of strong selection is an important component of evolutionary ecology, as are the consequences of such heterogeneity. Organisms may experience diminishing returns of increased reproductive allocation as clutch or litter size increases, affecting current and residual reproductive success. Given existing uncertainty regarding trade-offs between the quantity and quality of offspring, we sought to examine the potential for diminishing returns on increased reproductive allocation in a long-lived species of goose, with a particular emphasis on the effect of position in the laying sequence on offspring quality. To better understand the effects of maternal allocation on offspring survival and growth, we estimated the effects of egg size, timing of breeding, inter- and intra-annual variation, and position in the laying sequence on gosling survival and growth rates of black brant Branta bernicla nigricans breeding in western Alaska from 1987 to 2007. We found that gosling growth rates and survival decreased with position in the laying sequence, regardless of clutch size. Mean egg volume of the clutch a gosling originated from had a positive effect on gosling survival (ß = 0.095, 95% CRI: 0.024, 0.165) and gosling growth rates (ß = 0.626, 95% CRI: 0.469, 0.738). Gosling survival (ß = -0.146, 95% CRI: -0.214, -0.079) and growth rates (ß = -1.286, 95% CRI: -1.435, -1.132) were negatively related to hatching date. These findings indicate substantial heterogeneity in offspring quality associated with their position in the laying sequence. They also potentially suggest a trade-off mechanism for females whose total reproductive investment is governed by pre-breeding state.


Assuntos
Gansos , Reprodução , Alaska , Animais , Tamanho da Ninhada , Feminino , Tamanho da Ninhada de Vivíparos , Gravidez
2.
Curr Biol ; 29(14): R679-R680, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336081

RESUMO

Plants often compete in a marketplace that involves the exchange of floral rewards for pollination service [1]. This marketplace is frequently viewed as revolving around a single currency, typically nectar. While this focus has established pollinators such as bees as classic models in foraging ecology, in reality many plants provide both pollen and nectar, which vary in composition within and across species [2]. How this complexity impacts interactions between plants, pollinators, and co-flowering competitors is unknown. We explored how variation in two axes of reward chemistry - nectar sugar and pollen alkaloid content - impacted competition for bumblebee visits. The effect of variation in one reward depended on the presence and quality of the other - bees discriminated against flowers with more defended pollen when all flowers offered the same quality nectar. However, bees preferred flowers with highly defended pollen when they offered higher quality nectar, suggesting that attractive nectar can overcome the ecological costs of defended pollen. Recognizing the interdependence of these floral currencies may help identify traits that drive indirect interactions between plants and clarify broader evolutionary patterns of floral reward phenotypes.


Assuntos
Alcaloides/metabolismo , Abelhas/fisiologia , Néctar de Plantas/química , Pólen/química , Açúcares/metabolismo , Animais , Flores/química , Polinização , Recompensa
3.
Ecol Evol ; 9(9): 5281-5291, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31110679

RESUMO

Changes in ecological conditions can induce changes in behavior and demography of wild organisms, which in turn may influence population dynamics. Black brant (Branta bernicla nigricans) nesting in colonies on the Yukon-Kuskokwim Delta (YKD) in western Alaska have declined substantially (~50%) since the turn of the century. Black brant are herbivores that rely heavily on Carex subspathacea (Hoppner's sedge) during growth and development. The availability of C. subspathacea affects gosling growth rates, which subsequently affect pre- and postfledging survival, as well as size and breeding probability as an adult. We predicted that long-term declines in C. subspathacea have affected gosling growth rates, despite the potential of behavior to buffer changes in food availability during brood rearing. We used Bayesian hierarchical mixed-effects models to examine long-term (1987-2015) shifts in brant behavior during brood rearing, forage availability, and gosling growth rates at the Tutakoke River colony. We showed that locomotion behaviors have increased (ß = 0.05, 95% CRI: 0.032-0.068) while resting behaviors have decreased (ß = -0.024, 95% CRI: -0.041 to -0.007), potentially in response to long-term shifts in forage availability and brood density. Concurrently, gosling growth rates have decreased substantially (ß = -0.100, 95% CRI: -0.191 to -0.016) despite shifts in behavior, mirroring long-term declines in the abundance of C. subspathacea (ß = -0.191, 95% CRI: -0.355 to -0.032). These results have important implications for individual fitness and population viability, where shifts in gosling behavior putatively fail to mitigate long-term declines in forage availability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA