Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 435: 115811, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896194

RESUMO

Invasive Staphylococcus aureus (S. aureus) infections are a leading cause of death and not effectively treated with prolonged standard of care antibiotics. A novel THIOMAB™ antibody antibiotic conjugate (TAC) was developed that uses a bacterial-wall specific antibody to deliver the antibiotic (dmDNA31, a rifamycin analogue) to bacteria to minimize toxicities typically seen with prolonged use of traditional antibiotics. The TAC nonclinical toxicology package included repeat dose rat and cynomolgus monkey toxicology studies for 8 weekly intravenous (IV) doses, a 7-day daily repeat dose IV toxicology study of dmDNA31 and an assessment of genotoxicity, cardiovascular toxicity, neurotoxicity and sperm parameters. TAC and dmDNA31 were well tolerated in rats and monkeys, and there was no evidence of genotoxicity, cardiovascular toxicity or neurotoxicity. Non-adverse findings were observed and included blue discoloration in skin, blood, etc. due to the blue color of dmDNA31, increased globulin due to the high doses of antibodies, and abnormal sperm morphology of small heads in male rats with no histopathology correlate in testis. This is an example of antibody-mediated delivery of an antibiotic that has the potential to offer a more effective way of eradicating infection while providing a better safety profile compared to traditional antibiotics.


Assuntos
Imunotoxinas/toxicidade , Imunotoxinas/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Administração Intravenosa , Animais , Doenças Cardiovasculares/induzido quimicamente , Parede Celular/química , Sistemas de Liberação de Medicamentos , Feminino , Globulinas/metabolismo , Macaca fascicularis , Masculino , Testes de Mutagenicidade , Doenças do Sistema Nervoso/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Espermatozoides/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Testículo/patologia
2.
Toxicol Appl Pharmacol ; 266(1): 86-94, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23142475

RESUMO

Several toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin. GEN-203 is a lipophilic weak base as demonstrated by its physicochemical and structural properties: high LogD (distribution coefficient) (4.3) and high measured pKa (7.45) due to the basic amine (N-ethyl-3-fluoro-4-aminopiperidine). The physicochemical properties of GEN-203 were hypothesized to drive the high distribution of this compound to tissues as evidenced by a moderately-high volume of distribution (Vd>3l/kg) in mouse and subsequent toxicities of the compound. Specifically, the basicity of GEN-203 was decreased through addition of a second fluorine in the 3-position of the aminopiperidine to yield GEN-890 (N-ethyl-3,3-difluoro-4-aminopiperidine), which decreased the volume of distribution of the compound in mouse (Vd=1.0l/kg), decreased its tissue drug concentrations and led to decreased toxicity in mice. This strategy suggests that when toxicity is driven by tissue drug concentrations, optimization of the physicochemical parameters that drive tissue distribution can result in decreased drug concentrations in tissues, resulting in lower toxicity and improved safety margins.


Assuntos
Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/toxicidade , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Feminino , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Masculino , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-met/metabolismo , Distribuição Aleatória , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA