Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 357(1): e2300326, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933686

RESUMO

The primary strategy in the fight against cancer is to screen compounds that may be effective on different types of cancer. Compounds from plants seem to be a good source. The present study investigated the inhibitory effects of some flavonoids on the 6-phosphogluconate dehydrogenase (6-PGD) enzyme. We determined that quercetin, myricetin, fisetin, morin, apigenin, and baicalein exhibited powerful inhibition effects with IC50 values between 4.08 and 21.26 µM, while luteolin, kaempferol, apiin, galangin, and baicalin showed moderate effects with IC50 values between 54.15 and 138.91 µM. Quercetin competitively inhibited the binding of NADP and 6-phosphogluconate to the 6-PGD enzyme with Ki values of 0.527 ± 0.251 and 0.374 ± 0.138 µM, respectively. We calculated Ki values using the Cheng-Prusoff equation as between 0.44 and 14.88 µM. The possible interaction details of polyphenols with the active site of 6-PGD were analyzed with docking software. In silico and in vitro studies indicated that the -OH groups on the A and C ring of flavonoids bind to the enzyme's active site via hydrogen bonding, while the -OH groups on the C ring contributed significantly to the increase in the inhibitory potentials of the molecules. Molecular dynamic simulations tested the stability of the 6-PGD-quercetin complex during 100 ns. These phytochemicals were suitable for drug use when optimized with absorption, distribution, metabolism, excretion, and toxicity (ADMET) criteria. The effects of the studied compounds on cancer cell lines of potential targets were demonstrated by network analysis. In conclusion, this study suggests that flavonoids found to be potent inhibitors could serve as leading candidates to treat many cancers via 6-PGD inhibition.


Assuntos
Fosfogluconato Desidrogenase , Quercetina , Quercetina/farmacologia , Fosfogluconato Desidrogenase/metabolismo , Relação Estrutura-Atividade , Flavonoides/farmacologia , Flavonoides/química , Polifenóis
2.
J Sci Food Agric ; 104(7): 4039-4049, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376445

RESUMO

BACKGROUND: The objective of this study is to investigate the antiproliferative, antioxidant, antimicrobial, and enzyme activity capacities and phytochemical compositions of Thymus pectinatus (TP), Thymus convolutus (TC), which are endemic to Türkiye. Quantitative analysis of phenolic compounds in the extracts was conducted using liquid chromatography-tandem mass spectrometry, targeting 53 phenolic compounds. RESULTS: Rosmarinic acid, quinic acid, and cynaroside were identified as the major compounds, exhibiting quantitative variation in both extracts. The extracts had a high total phenolic content, with 113.57 ± 0.58 mg gallic acid equivalents (GAE)/g extract for TP and 130.52 ± 1.05 mg GAE/g extract for TC. Furthermore, although both extracts exhibited high total flavonoid content; the TP extract (75.12 ± 1.65 mg quercitin equivalents (QE)/g extract) displayed a higher flavonoid content than the TC extract (30.24 ± 0.74 mg QE/g extract) did. The extracts had a promising antiproliferative effect on C6, HeLa, and HT29 cancer cell lines with a less cytotoxic effect (10.5-14.2%) against normal cells. Both extracts exhibited very potent inhibitory activity against the xanthine oxidase enzyme, with half-maximal inhibitory concentration values of respectively 2.07 ± 0.03 µg mL-1 and 2.76 ± 0.06 µg mL-1 and moderate activity against tyrosinase and α-glucosidase. Docking simulations proved that rosmarinic acid and cynaroside, the major components of the extracts, were the most potent inhibitors of xanthine oxidase. According to antimicrobial activity results, the TC extract exhibited moderate activity against Staphylococcus aureus, and the TP extract had strong activity against both Enterococcus faecium and S. aureus. CONCLUSION: These findings emphasize the beneficial effects of the two endemic Thymus species on human health and suggest their potential use as plant-derived bioactive agents. © 2024 Society of Chemical Industry.


Assuntos
Anti-Infecciosos , Pectinatus , Humanos , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Staphylococcus aureus , Xantina Oxidase , Anti-Infecciosos/farmacologia , Cromatografia Líquida , Flavonoides/farmacologia , Flavonoides/análise , Fenóis/análise , Células HeLa , Compostos Fitoquímicos/química
3.
J Mol Recognit ; 36(11): e3061, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37720970

RESUMO

Diabetes mellitus is one of the most critical health problems affecting the quality of life of people worldwide, especially in developing countries. According to the World Health Organization reports, the number of patients with diabetes is approximately 420 million, and this number is estimated to be 642 million in 2040. There are 2 main types of diabetes: Type 1 (T1DM), where the body cannot produce enough insulin, and Type 2 (T2DM), where the body cannot use insulin properly. Patients with T1DM are treated with insulin injections while oral glucose-lowering drugs are used for patients with T2DM. Oral antihyperglycemic drugs used in the treatment of type 2 diabetes mellitus have different mechanisms. Among these, α-Glucosidase and α-amylase inhibitors are one of the most important inhibitors. The antidiabetic effect of the chalcones, which show rich activity, draws attention. This research aims to synthesize chalcone derivatives that could show potential antidiabetic activity. In this study, the inhibitory activity of the chalcone compounds (4a-4g, 5a-5g) was tested against α-glucosidase and α-amylase enzymes. Besides, molecular modeling was utilized to predict potential interactions of the synthesized compounds that exhibit inhibitory effects. In both in vitro and in silico studies, the analyses revealed that compound 5e exhibits strong inhibitory effects against α-glucosidase enzymes (Binding energy: -7.75 kcal/mol, IC50 : 28.88 µM). Additionally, compound 4f demonstrates encouraging inhibitory effects against α-Amylase (Binding energy: -11.08 kcal/mol, IC50 : 46. 21 µM).


Assuntos
Chalcona , Chalconas , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Chalconas/química , Chalconas/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Insulina , Simulação de Acoplamento Molecular , Qualidade de Vida
4.
Chem Biodivers ; 20(11): e202301132, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37743325

RESUMO

A novel Schiff base namely 3,5-di-tert-butyl-6-((2-(perfluorophenyl)hydrazono)methyl)phenol was successfully synthesized and characterized using FT-IR and 1 H-NMR, 13 C-NMR, and 19 F-NMR. The crystal structure analysis of the Schiff base compound was also characterized with single crystal X-ray diffraction studies and supported the spectroscopic results. The cytotoxicity, anti-bacterial properties, and enzyme inhibition of the compound were also investigated. The molecular docking studies were performed in order to explain the interactions of the synthesized compound with target enzymes. The newly synthesized hydrazone derivative Schiff base compound showed high cellular toxicity on MCF-7 and PC-3 cells. Also, this compound caused low antibacterial effect on E. coli and S. aureus. Besides, the compound exhibited the inhibitory effect against pancreatic cholesterol esterase and carbonic anhydrase isoenzyme I, II with IC50 values 63, 99, and 188 µM, respectively. Consequently, it has been determined that the prepared Schiff base is an active compound in terms of cytotoxicity, enzyme inhibition, and anti-bacterial properties. These results provide preliminary information for some biological features of the compound and can play a major role in drug applications of the Schiff base compound.


Assuntos
Escherichia coli , Bases de Schiff , Simulação de Acoplamento Molecular , Raios X , Bases de Schiff/farmacologia , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Hidrazinas/farmacologia , Hidrazinas/química , Estrutura Molecular
5.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296707

RESUMO

The reliance of tumor cells on aerobic glycolysis is one of the emerging hallmarks of cancer. Pyruvate kinase M2 (PKM2), an important enzyme of glycolytic pathway, is highly expressed in a number of cancer cells. Tumor cells heavily depend on PKM2 to fulfill their divergent energetic and biosynthetic requirements, suggesting it as novel drug target for cancer therapies. Based on this context, we performed enzymatic-assay-based screening of the in-house phenolic compounds library for the identification of PKM2 inhibitors. This screening identified silibinin, curcumin, resveratrol, and ellagic acid as potential inhibitors of PKM2 with IC50 values of 0.91 µM, 1.12 µM, 3.07 µM, and 4.20 µM respectively. For the determination of Ki constants and the inhibition type of hit compounds, Lineweaver-Burk graphs were plotted. Silibinin and ellagic acid performed the competitive inhibition of PKM2 with Ki constants of 0.61 µM and 5.06 µM, while curcumin and resveratrol were identified as non-competitive inhibitors of PKM2 with Ki constants of 1.20 µM and 7.34 µM. The in silico screening of phenolic compounds against three binding sites of PKM2 provided insight into the binding pattern and functionally important amino residues of PKM2. Further, the evaluation of cytotoxicity via MTT assay demonstrated ellagic acid as potent inhibitor of cancer cell growth (IC50 = 20 µM). These results present ellagic acid, silibinin, curcumin, and resveratrol as inhibitors of PKM2 to interrogate metabolic reprogramming in cancer cells. This study has also provided the foundation for further research to validate the potential of identified bioactive entities for PKM2 targeted-cancer therapies.


Assuntos
Curcumina , Leucemia Mieloide Aguda , Humanos , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Curcumina/farmacologia , Resveratrol/farmacologia , Ácido Elágico , Silibina , Glicólise , Linhagem Celular Tumoral
6.
Environ Res ; 190: 110017, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768475

RESUMO

Nature as an infinite treasure of chemotypes and pharmacophores will continue to play an imperative role in the drug discovery. Natural products (NPs) such as plant and fungal metabolites have emerged as leads in drug discovery during recent years due to their efficacy, safety and selectivity. The current review summarizes natural sources as well as pharmacological potential of hispolon which is a major constituent of traditional medicinal mushroom Phellinus linteus. The study aims to update the scientific community about recent developments of hispolon in the arena of natural drugs by providing insights into its present status in therapeutic pursuits. Hispolon, a polyphenol has been reported to possess anticancer, antidiabetic, antioxidant, antiviral and anti-inflammatory activities. It fights against cancer via induction of apoptosis, halting cell cycle and inhibition of metastasis by targeting various cellular signaling pathways including PI3K/Akt, MAPK and NF-κB. The current review proposes that hispolon provides a novel opportunity for pharmacological applications and its styrylpyrone carbon skeleton might serve as an attractive scaffold for drug development. However, future researches are recommended to assess bioavailability, toxicological limits, pharmacokinetic and pharmacodynamic profiles of hispolon, in order to establish its potential as a potent multi-targeted drug in the near future.


Assuntos
Neoplasias , Polifenóis , Catecóis , Humanos , Fosfatidilinositol 3-Quinases , Polifenóis/farmacologia
7.
J Biochem Mol Toxicol ; : e22229, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30506659

RESUMO

Iron is an indispensable element for vital activities in almost all living organisms. It is also a cofactor for many proteins, enzymes, and other essential complex biochemical processes. Therefore, iron trafficking is firmly regulated by Hepcidin (Hamp), which is regarded as the marker for iron accumulation. The disruption of iron homeostasis leads to oxidative stress that causes various human diseases, but this mechanism is still unclear. The aim of this study is to provide a better in vivo and in vitro understanding of how long-term iron overload affects the gene expression and activities of some antioxidant enzymes, such as glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) in the spleen. The findings of this study show that iron overload reduces the gene expression of G6pd, 6pgd, and Gr, but its actual effect was on the protein level.

8.
J Biochem Mol Toxicol ; 30(6): 295-301, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26820767

RESUMO

The present study was aimed to investigate characterization and purification of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase from rat heart and the inhibitory effect of three drugs. The purification of the enzymes was performed using 2',5'-ADP sepharose 4B affinity material. The subunit and the natural molecular weights were analyzed by SDS-PAGE and gel filtration. Biochemical characteristics such as the optimum temperature, pH, stable pH, and salt concentration were examined for each enzyme. Types of product inhibition and Ki values with Km and Vmax values of the substrates and coenzymes were determined. According to the obtained Ki and IC50 values, furosemide, digoxin, and dopamine showed inhibitory effect on the enzyme activities at low millimolar concentrations in vitro conditions. Dopamine inhibited the activity of these enzymes as competitive, whereas furosemide and digoxin inhibited the activity of the enzyme as noncompetitive.


Assuntos
Digoxina/química , Dopamina/química , Inibidores Enzimáticos/química , Furosemida/química , Glucosefosfato Desidrogenase/isolamento & purificação , Glutationa Redutase/isolamento & purificação , Fosfogluconato Desidrogenase/isolamento & purificação , Animais , Ligação Competitiva , Ensaios Enzimáticos , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/química , Glutationa Redutase/antagonistas & inibidores , Glutationa Redutase/química , Concentração de Íons de Hidrogênio , Cinética , Masculino , Peso Molecular , Miocárdio/química , Miocárdio/enzimologia , Fosfogluconato Desidrogenase/antagonistas & inibidores , Fosfogluconato Desidrogenase/química , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato , Temperatura
9.
J Enzyme Inhib Med Chem ; 31(6): 1342-8, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26758606

RESUMO

G6PD, 6PGD and GR have been purified separately in the single step from rat lung using 2', 5'-ADP Sepharose 4B affinity chromatography. The purified enzymes showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of the enzymes were estimated to be 134 kDa for G6PD, 107 kDa for 6PGD and 121 kDa for GR by Sephadex G-150 gel filtration chromatography, and the subunit molecular weights was respectively found to be 66, 52 and 63 kDa by SDS-PAGE. Optimum pH, stable pH, optimum ionic strength, optimum temperature, KM and Vmax values for substrates were determined. Product inhibition studies were also performed. The enzymes were inhibited by levofloxacin, furosemide, ceftazidime, cefuroxime and gentamicin as in vitro with IC50 values in the range of 0.07-30.13 mM. In vivo studies demonstrated that lung GR was inhibited by furosemide and lung 6PGD was inhibited by levofloxacin.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Glucosefosfato Desidrogenase/isolamento & purificação , Glutationa Redutase/isolamento & purificação , Pulmão/enzimologia , Fosfogluconato Desidrogenase/isolamento & purificação , Animais , Cromatografia em Gel , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/metabolismo , Glutationa Redutase/antagonistas & inibidores , Glutationa Redutase/metabolismo , Fosfogluconato Desidrogenase/antagonistas & inibidores , Fosfogluconato Desidrogenase/metabolismo , Ratos , Ratos Sprague-Dawley
10.
J Enzyme Inhib Med Chem ; 31(2): 314-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25798688

RESUMO

Pyruvate kinase isoenzyme M2 (PKM2) is one of the most important control point enzyme in glycolysis pathway. Hence, its inhibitors and activators are currently considered as the potential anticancer agents. The effect of 28 polyphenolic compounds on the enzyme activity was investigated in vitro. Among these compounds, neoeriocitrin, (-)-catechin gallate, fisetin, (±)-taxifolin and (-)-epicatechin have the highest inhibition effect with IC50 value within 0.65-1.33 µM range. Myricetin and quercetin 3-ß-D-glucoside exhibited the highest activation effect with 0.51 and 1.34 µM AC50 values, respectively. Twelve of the compounds showed inhibition effect within 7-38 µM range of IC50 value. Sinapinic acid and p-coumaric acid showed an activation effect with 26.2 and 22.2 µM AC50 values, respectively. The results propose that the polyphenolics may be the potential PKM2 inhibitors/activators, and they may be used as lead compounds for the synthesis of new inhibitors or activators of this enzyme.


Assuntos
Proteínas de Transporte/metabolismo , Flavonoides/farmacologia , Hidroxibenzoatos/farmacologia , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Ácidos Cumáricos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Ligação a Hormônio da Tireoide
11.
Arch Pharm (Weinheim) ; 349(2): 132-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26708302

RESUMO

Pyruvate kinase isoenzyme M2 (PKM2) is expressed excessively in many different cancer types and it plays an important role in the control of glucose metabolism. Thus, it is evaluated as an important target in the development of medication for cancer. The flavonoids comprise a large group of natural products with variable phenolic structures and occur mainly in plants. They are of great interest due to their biological properties. In this study, the effects of various flavonoid derivatives on the PKM2 enzyme activity were analyzed in vitro. The flavonoid derivatives 1 and 2 showed inhibition effect with IC50 values of <60 µM. IC50 values of compounds 3-8 were calculated as 134, 415, 145, 163, 295 µM, and 3.5 mM, respectively. The molecules 9-12 showed an activation effect with values of AC50 of less than 90 µM. The IC50 values of the derivatives 13-17 were calculated as 115, 150, 200, 221, and 275 µM, respectively. The results show that catechin derivatives can be probably used as lead compounds for the design of PKM2 enzyme activators and inhibitors.


Assuntos
Flavonoides/química , Piruvato Quinase/antagonistas & inibidores , Flavonoides/farmacologia , Células HeLa , Humanos , Relação Estrutura-Atividade
12.
J Biochem Mol Toxicol ; 29(3): 135-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25418905

RESUMO

Dihydrofolate reductase (DHFR) plays a fundamental role in cellular metabolism and cell growth. Inhibition of this enzyme will cause a decrease in the amount of folate that occurs in many metabolic processes, and the deficiency of which may cause various diseases. This study investigated the effects of some drugs and phenolic compounds on DHFR activity in vitro. To determine the inhibitory effect of compounds, enzyme activity was measured with a final concentration of an inhibitor ranging from 10 µM to 51 mM. DHFR was inhibited effectively by naringin, ferulic acid, and levofloxacin with IC50 values under 660 µM. Syringic acid, cefepime, ceftizoxime, cefazolin, ceftriaxone, and ceftazidime exhibited inhibitory effects on the enzyme activity with IC50 values in the range of 3.840-30.224 mM. K(i) constants were calculated using the Cheng-Prusoff equation. K(i) constants calculated in the range of 0.009-2.024 mM with respect to nicotinamide adenine dinucleotide phosphate oxidase (NADPH) and in the range of 0.060-5.830 mM about FH2.


Assuntos
Antagonistas do Ácido Fólico/farmacologia , Cefalosporinas/farmacologia , Ácidos Cumáricos/farmacologia , Flavanonas/farmacologia , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Humanos , Cinética , Levofloxacino/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo
13.
J Biochem Mol Toxicol ; 29(3): 109-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25388478

RESUMO

PKM2 is an important target for designing anticancer drug. Inhibitors and activators of this enzyme are suitable molecules for use in treating cancer. The aim of the present study was to investigate the effect of certain flavones on PKM2. Apigenin, wogonin, flavone, 3-hydroxyflavone, 5-hydroxyflavone, 6-hydroxyflavone, and 7-hydroxyflavone effectively inhibited PKM2, with IC50 in the range of 0.99-2.120 µM. The kinetic study indicated that these compounds acted as noncompetitive with Ki values of 3.53-5.67 µM toward phosphoenolpyruvate. Scutellarin and tangeritin demonstrated strong activation effect with AC50 values < 2 µM. Diosmetin, baicalin, baicalein, and luteolin showed an intermediate-level activator effect. These results demonstrate that flavone and their analogs could serve as leading compounds to develop new potent and selective inhibitor and activator for PKM2.


Assuntos
Proteínas de Transporte/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonas/farmacologia , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Flavanonas/farmacologia , Glucuronatos/farmacologia , Humanos , Isoenzimas/efeitos dos fármacos , Isoenzimas/metabolismo , Cinética , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
14.
J Biochem Mol Toxicol ; 28(11): 510-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25130191

RESUMO

Polyphenols are the important compounds that have various bioactivities. They constitute vital active agents of not only daily diet but also natural medicines that are used traditionally. It is generally considered that they are safe because they are natural. In some conducted studies, different negative effects of these compounds were mentioned. Twelve phenolic compounds have been assayed to determine the effect of inhibition on glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) enzymes activity. For in vitro studies, the enzymes were purified from human erythrocytes using 2',5'-ADP Sepharose 4B affinity chromatography. Naringenin, caffeic acid, ellagic acid, ferulic acid, and sinapic acid against two enzymes, hesperidin and polydatin, only on G6PD activity and chrysin solely against 6PGD showed inhibitory effect. Chlorogenic acid, p-coumaric acid, and syringic acid did not exhibit an effect on the activity of the two enzymes.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucosefosfato Desidrogenase/antagonistas & inibidores , Fosfogluconato Desidrogenase/antagonistas & inibidores , Polifenóis/farmacologia , Inibidores Enzimáticos/química , Eritrócitos/enzimologia , Humanos , Polifenóis/química
15.
J Biomol Struct Dyn ; 42(5): 2341-2357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37098809

RESUMO

Various studies conducted on Centaurea species indicate that the relevant plant is good source of bioactive phytochemicals. In this study, in vitro studies were used to determine bioactivity properties of methanol extract of Centaurea mersinensis - endemic species in Turkey - on extensive basis. Furthermore, the interaction of target molecules, identified for breast cancer and phytochemicals in the extract, was investigated via in silico analyses to support findings received in vitro. Scutellarin, quercimeritrin, chlorogenic acid and baicalin were primary phytochemicals in the extract. Methanol extract and scutellarin had higher cytotoxic effects against MCF-7 (IC50=22.17 µg/mL, and IC50=8.25 µM, respectively), compared to other breast cancer cell lines (MDA-MB-231, SKBR-3). The extract had strong antioxidant properties and inhibited target enzymes, especially α-amylase (371.69 mg AKE/g extract). The results of molecular docking indicate that main compounds of extract show high-strength bonding to the c-Kit tyrosine among target molecules identified in breast cancer, compared to other target molecules (MMP-2, MMP-9, VEGFR2 kinase, Aurora-A kinase, HER2). The tyrosinase kinase (1T46)-Scutellarin complex showed considerable stability in 150 ns simulation as per MD findings, and it was coherent with optimal docking findings. Docking findings and HOMO-LUMO analysis results corresponds with in vitro experiments. Medicinal properties of phytochemicals, which was determined to be suitable for oral use along with ADMET, were found to be within normal limits except for their polarity properties. In conclusion, in vitro and in silico studies indicated that the relevant plant yields promising results regarding its potential to develop novel and effective medicational products.Communicated by Ramaswamy H. Sarma.


Assuntos
Apigenina , Neoplasias da Mama , Centaurea , Glucuronatos , Humanos , Feminino , Simulação de Acoplamento Molecular , Metanol/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Centaurea/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Antioxidantes/farmacologia , Antioxidantes/química
16.
J Biomol Struct Dyn ; 41(5): 1828-1845, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35021953

RESUMO

The main objective of the present study was to synthesize potential inhibitor/activators of AChE and hCA I-II enzymes, which are thought to be directly related to Alzheimer's disease. Dithiodibenzothioate compounds were synthesized by thioesterification. Six different thiolate compounds produced were characterized by 1H-, 13C-NMR, FT-IR, LC-MS/MS methods. HOMO-LUMO calculations and electronic properties of all synthesized compounds were comprehensively illuminated with a semi-empirical molecular orbital (SEMO) package for organic and inorganic systems using Austin Model 1 (AM1)-Hamiltonian as implemented in the VAMP module of Materials Studio. In addition, the inhibition effects of these compounds for AChE and hCA I-II in vitro conditions were investigated. It was revealed that TE-1, TE-2, TE-3, TE-4, TE-5, and TE-6 compounds inhibited the AChE under in vitro conditions. TE-1 compound activated the enzyme hCA I while TE-2, TE-3 TE-4 compounds inhibited it. TE-5 and TE-6, on the other hand, did not exhibit a regular inhibition profile. Similarly, TE-1 activated the hCA II enzyme whereas TE-2, TE-3, TE-4, and TE-5 compounds inhibited it. TE-6 compound did not have a consistent inhibition profile for hCA II. Docking studies were performed with the compounds against AChE and hCA I-II receptors using induced-fit docking method. Molecular Dynamics (MD) simulations for best effective three protein-ligand couple were conducted to explore the binding affinity of the considered compounds in semi-real in-silico conditions. Along with the MD results, TE-1-based protein complexes were found more stable than TE-5. Based on these studies, TE-1 compound could be considered as a potential drug candidate for AD.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores da Anidrase Carbônica , Inibidores da Colinesterase , Inibidores da Colinesterase/química , Inibidores da Anidrase Carbônica/farmacologia , Cromatografia Líquida , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem , Simulação de Acoplamento Molecular , Acetilcolinesterase/química , Relação Estrutura-Atividade
17.
Artigo em Inglês | MEDLINE | ID: mdl-37202895

RESUMO

INTRODUCTION: In this study, it was aimed to determine the in vitro and in silico effects of some natural and synthetic molecules on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes. BACKGROUND: Alzheimer's disease (AD) and Type II diabetes mellitus (T2DM), which are considered amongst the most important diseases of today's world. However, the side effects of therapeutic agents used in both diseases limit their use. Therefore, it is important to develop drugs with high therapeutic efficacy and better pharmacological profile. OBJECTIVE: This study sets out to determine the related enzyme inhibitors used in the treatment of AD and T2DM, which are considered amongst the most important diseases of today's world. METHODS: In the current study, the in vitro and in silico effects of dienestrol, hesperetin, L-thyroxine, 3,3',5-Triiodo-L-thyronine (T3) and dobutamine molecules on AChE, BChE and α-glycosidase enzyme activities were investigated. RESULTS: All the molecules showed an inhibitory effect on the enzymes. The IC50 and Ki values of the L-Thyroxine molecule, which showed the strongest inhibition effect for the AChE enzyme, were determined as 1.71 µM and 0.83±0.195 µM, respectively. In addition, dienestrol, T3 and dobutamine molecules showed a more substantial inhibition effect than tacrine. Dobutamine molecule showed the most substantial inhibition effect for BChE enzyme, and IC50 and Ki values were determined as 1.83 µM and 0.845±0.143 µM, respectively. The IC50 and Ki values for the hesperetin molecule, which showed the strongest inhibition for the α-glycosidase enzyme, were determined as 13.57 µM and 12.33±2.57 µM, respectively. CONCLUSION: According to the results obtained, it may be said that the molecules used in the study are potential inhibitor candidates for AChE, BChE and α-glycosidase.

18.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37259360

RESUMO

Triazole-based acetamides serve as important scaffolds for various pharmacologically active drugs. In the present work, structural hybrids of 1,2,4-triazole and acetamides were furnished by chemically modifying 2-(4-isobutylphenyl) propanoic acid (1). Target compounds 7a-f were produced in considerable yields (70-76%) by coupling the triazole of compound 1 with different electrophiles under different reaction conditions. These triazole-coupled acetamide derivatives were verified by physiochemical and spectroscopic (HRMS, FTIR, 13CNMR, and 1HNMR,) methods. The anti-liver carcinoma effects of all of the derivatives against a HepG2 cell line were investigated. Compound 7f, with two methyl moieties at the ortho-position, exhibited the highest anti-proliferative activity among all of the compounds with an IC50 value of 16.782 µg/mL. 7f, the most effective anti-cancer molecule, also had a very low toxicity of 1.190.02%. Molecular docking demonstrates that all of the compounds, especially 7f, have exhibited excellent binding affinities of -176.749 kcal/mol and -170.066 kcal/mol to c-kit tyrosine kinase and protein kinase B, respectively. Compound 7f is recognized as the most suitable drug pharmacophore for the treatment of hepatocellular carcinoma.

19.
Protein Expr Purif ; 81(1): 1-4, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21930213

RESUMO

The enzymes of glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) were purified from rat kidney in one chromatographic step consisting of the use of the 2',5'-ADP Sepharose 4B by using different elution buffers. This purification procedure was accomplished with the preparation of the homogenate and affinity chromatography on 2',5'-ADP Sepharose 4B. The purity and subunit molecular weights of the enzymes were checked on SDS-PAGE and purified enzymes showed a single band on the gel. The native molecular weights of the enzymes were found with Sephadex G-150 gel filtration chromatography. Using this procedure, G6PG, having the specific activity of 32 EU/mg protein, was purified 531-fold with a yield of 88%; 6PGD, having the specific activity of 25 EU/mg protein, was purified 494-fold with a yield of 73%; and GR, having the specific activity of 33 EU/mg protein, was purified 477-fold with a yield of 76%. Their native molecular masses were estimated to be 144 kDa for G6PD, 110 kDa for 6PGD, and 121 kDa for GR and the subunit molecular weights were found to be 68, 56, and 61 kDa, respectively. A new modified method to purify G6PD, 6PGD, and GR, namely one chromatographic step using the 2',5'-ADP Sepharose 4B, is described for the first time in this study. This procedure has several advantages for purification of enzymes, such as, rapid purification, produces high yield, and uses less chemical materials.


Assuntos
Cromatografia de Afinidade/métodos , Glucosefosfato Desidrogenase/isolamento & purificação , Glutationa Redutase/isolamento & purificação , Rim/enzimologia , Fosfogluconato Desidrogenase/isolamento & purificação , Sefarose/análogos & derivados , Animais , Soluções Tampão , Eletroforese em Gel de Poliacrilamida , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , Glutationa Redutase/química , Glutationa Redutase/metabolismo , Rim/química , Peso Molecular , Fosfogluconato Desidrogenase/química , Fosfogluconato Desidrogenase/metabolismo , Ratos , Ratos Sprague-Dawley , Sefarose/química
20.
Arch Physiol Biochem ; 128(5): 1368-1374, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32463711

RESUMO

Aldose reductase (AR) is the first enzyme of the polyol pathway that has physiological importance under hyperglycaemic conditions. The article has been focussed on AR enzyme inhibition by selected compounds. For this purpose, the in vitro inhibitory effects of various compounds on commercially available recombinant human AR (rAR) enzyme activity were investigated. The IC50 values of compounds on rAR inhibition effect were found for 6-hydroxy flavone, syringic acid, diosmetin, 6-fluoroflavone, 7-hydroxy-4'-nitroisoflavone, myricetin as 2.05, 2.97, 15.75, 16.1, 49.5, and 63 µM, respectively. 6-Hydroxy flavone and syringic acid competitively inhibited rAR with respect to the NADPH with Ki values 0.509 ± 0.036 and 0.842 ± 0.012 µM. In addition, docking studies were performed to evaluate the potential enzyme binding positions of the compounds. Our in vitro and in silico results indicated that the 6-hydroxy flavone may be a good lead compound in the development of AR inhibitors to prevent diabetic complications.


Assuntos
Aldeído Redutase , Flavonas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Flavonas/farmacologia , Flavonoides/farmacologia , Ácido Gálico/análogos & derivados , Humanos , NADP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA