Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Methods ; 15(9): 723-731, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082899

RESUMO

Spinal cord neural stem cells (NSCs) have great potential to reconstitute damaged spinal neural circuitry, but they have yet to be generated in vitro. We now report the derivation of spinal cord NSCs from human pluripotent stem cells (hPSCs). Our observations show that these spinal cord NSCs differentiate into a diverse population of spinal cord neurons occupying multiple positions along the dorso-ventral axis, and can be maintained for prolonged time periods. Grafts into injured spinal cords were rich with excitatory neurons, extended large numbers of axons over long distances, innervated their target structures, and enabled robust corticospinal regeneration. The grafts synaptically integrated into multiple host intraspinal and supraspinal systems, including the corticospinal projection, and improved functional outcomes after injury. hPSC-derived spinal cord NSCs could enable a broad range of biomedical applications for in vitro disease modeling and constitute an improved clinically translatable cell source for 'replacement' strategies in several spinal cord disorders.


Assuntos
Células-Tronco Neurais/patologia , Células-Tronco Pluripotentes/patologia , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Linhagem da Célula , Humanos
2.
Stem Cells ; 38(6): 716-726, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32101353

RESUMO

Fetal neural progenitor grafts have been evaluated in preclinical animal models of spinal cord injury and Parkinson's disease for decades, but the initial reliance on primary tissue as a cell source limited the scale of their clinical translatability. With the development of robust methods to differentiate human pluripotent stem cells to specific neural subtypes, cell replacement therapy holds renewed promise to treat a variety of neurodegenerative diseases and injuries at scale. As these cell sources are evaluated in preclinical models, new transsynaptic tracing methods are making it possible to study the connectivity between host and graft neurons with greater speed and detail than was previously possible. To date, these studies have revealed that widespread, long-lasting, and anatomically appropriate synaptic contacts are established between host and graft neurons, as well as new aspects of host-graft connectivity which may be relevant to clinical cell replacement therapy. It is not yet clear, however, whether the synaptic connectivity between graft and host neurons is as cell-type specific as it is in the endogenous nervous system, or whether that connectivity is responsible for the functional efficacy of cell replacement therapy. Here, we review evidence suggesting that the new contacts established between host and graft neurons may indeed be cell-type specific, and how transsynaptic tracing can be used in the future to further elucidate the mechanisms of graft-mediated functional recovery in spinal cord injury and Parkinson's disease.


Assuntos
Células-Tronco Neurais/transplante , Doença de Parkinson/terapia , Traumatismos da Medula Espinal/terapia , Humanos
3.
Nat Methods ; 10(10): 973-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892895

RESUMO

Technologies for engineering synthetic transcription factors have enabled many advances in medical and scientific research. In contrast to existing methods based on engineering of DNA-binding proteins, we created a Cas9-based transactivator that is targeted to DNA sequences by guide RNA molecules. Coexpression of this transactivator and combinations of guide RNAs in human cells induced specific expression of endogenous target genes, demonstrating a simple and versatile approach for RNA-guided gene activation.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Engenharia de Proteínas/métodos , Edição de RNA , Fatores de Transcrição/genética , Ativação Transcricional , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Ribonucleases/genética , Pequeno RNA não Traduzido
4.
Nanomedicine ; 12(2): 399-409, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26711960

RESUMO

Safety concerns and/or the stochastic nature of current transduction approaches have hampered nuclear reprogramming's clinical translation. We report a novel non-viral nanotechnology-based platform permitting deterministic large-scale transfection with single-cell resolution. The superior capabilities of our technology are demonstrated by modification of the well-established direct neuronal reprogramming paradigm using overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM). Reprogramming efficiencies were comparable to viral methodologies (up to ~9-12%) without the constraints of capsid size and with the ability to control plasmid dosage, in addition to showing superior performance relative to existing non-viral methods. Furthermore, increased neuronal complexity could be tailored by varying BAM ratio and by including additional proneural genes to the BAM cocktail. Furthermore, high-throughput NEP allowed easy interrogation of the reprogramming process. We discovered that BAM-mediated reprogramming is regulated by AsclI dosage, the S-phase cyclin CCNA2, and that some induced neurons passed through a nestin-positive cell stage. FROM THE CLINICAL EDITOR: In the field of regenerative medicine, the ability to direct cell fate by nuclear reprogramming is an important facet in terms of clinical application. In this article, the authors described their novel technique of cell reprogramming through overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM) by in situ electroporation through nanochannels. This new technique could provide a platform for further future designs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Reprogramação Celular , Proteínas de Ligação a DNA/genética , DNA/administração & dosagem , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Fatores do Domínio POU/genética , Fatores de Transcrição/genética , Transfecção/métodos , Animais , Linhagem Celular , DNA/genética , Eletroporação/métodos , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Plasmídeos/administração & dosagem , Plasmídeos/genética , Regulação para Cima
5.
Cell Stem Cell ; 30(10): 1299-1314.e9, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802036

RESUMO

Cell replacement therapies for Parkinson's disease (PD) based on transplantation of pluripotent stem cell-derived dopaminergic neurons are now entering clinical trials. Here, we present quality, safety, and efficacy data supporting the first-in-human STEM-PD phase I/IIa clinical trial along with the trial design. The STEM-PD product was manufactured under GMP and quality tested in vitro and in vivo to meet regulatory requirements. Importantly, no adverse effects were observed upon testing of the product in a 39-week rat GLP safety study for toxicity, tumorigenicity, and biodistribution, and a non-GLP efficacy study confirmed that the transplanted cells mediated full functional recovery in a pre-clinical rat model of PD. We further observed highly comparable efficacy results between two different GMP batches, verifying that the product can be serially manufactured. A fully in vivo-tested batch of STEM-PD is now being used in a clinical trial of 8 patients with moderate PD, initiated in 2022.


Assuntos
Células-Tronco Embrionárias Humanas , Doença de Parkinson , Humanos , Ratos , Animais , Doença de Parkinson/terapia , Distribuição Tecidual , Diferenciação Celular/fisiologia , Transplante de Células-Tronco/métodos , Neurônios Dopaminérgicos/fisiologia
6.
Stem Cell Reports ; 17(1): 159-172, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34971563

RESUMO

Transplantation in Parkinson's disease using human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons is a promising future treatment option. However, many of the mechanisms that govern their differentiation, maturation, and integration into the host circuitry remain elusive. Here, we engrafted hESCs differentiated toward a ventral midbrain DA phenotype into the midbrain of a preclinical rodent model of Parkinson's disease. We then injected a novel DA-neurotropic retrograde MNM008 adeno-associated virus vector capsid, into specific DA target regions to generate starter cells based on their axonal projections. Using monosynaptic rabies-based tracing, we demonstrated for the first time that grafted hESC-derived DA neurons receive distinctly different afferent inputs depending on their projections. The similarities to the host DA system suggest a previously unknown directed circuit integration. By evaluating the differential host-to-graft connectivity based on projection patterns, this novel approach offers a tool to answer outstanding questions regarding the integration of grafted hESC-derived DA neurons.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/metabolismo , Biomarcadores , Rastreamento de Células , Expressão Gênica , Genes Reporter , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Mesencéfalo/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Transplante de Células-Tronco
7.
Nat Commun ; 13(1): 3046, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650213

RESUMO

Stem cell therapies for Parkinson's disease (PD) have entered first-in-human clinical trials using a set of technically related methods to produce mesencephalic dopamine (mDA) neurons from human pluripotent stem cells (hPSCs). Here, we outline an approach for high-yield derivation of mDA neurons that principally differs from alternative technologies by utilizing retinoic acid (RA) signaling, instead of WNT and FGF8 signaling, to specify mesencephalic fate. Unlike most morphogen signals, where precise concentration determines cell fate, it is the duration of RA exposure that is the key-parameter for mesencephalic specification. This concentration-insensitive patterning approach provides robustness and reduces the need for protocol-adjustments between hPSC-lines. RA-specified progenitors promptly differentiate into functional mDA neurons in vitro, and successfully engraft and relieve motor deficits after transplantation in a rat PD model. Our study provides a potential alternative route for cell therapy and disease modelling that due to its robustness could be particularly expedient when use of autologous- or immunologically matched cells is considered.


Assuntos
Doença de Parkinson , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Neurônios Dopaminérgicos , Humanos , Mesencéfalo , Doença de Parkinson/terapia , Ratos , Tretinoína/farmacologia
8.
Nat Commun ; 11(1): 2434, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415072

RESUMO

Cell replacement is a long-standing and realistic goal for the treatment of Parkinson's disease (PD). Cells for transplantation can be obtained from fetal brain tissue or from stem cells. However, after transplantation, dopamine (DA) neurons are seen to be a minor component of grafts, and it has remained difficult to determine the identity of other cell types. Here, we report analysis by single-cell RNA sequencing (scRNA-seq) combined with comprehensive histological analyses to characterize intracerebral grafts from human embryonic stem cells (hESCs) and fetal tissue after functional maturation in a pre-clinical rat PD model. We show that neurons and astrocytes are major components in both fetal and stem cell-derived grafts. Additionally, we identify a cell type closely resembling a class of recently identified perivascular-like cells in stem cell-derived grafts. Thus, this study uncovers previously unknown cellular diversity in a clinically relevant cell replacement PD model.


Assuntos
Neurônios Dopaminérgicos/citologia , Doença de Parkinson/terapia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Encéfalo/metabolismo , Diferenciação Celular , Corpo Estriado , Modelos Animais de Doenças , Dopamina/metabolismo , Células-Tronco Embrionárias/citologia , Feminino , Sobrevivência de Enxerto , Humanos , Família Multigênica , RNA-Seq , Ratos , Ratos Nus , Regeneração , Análise de Célula Única , Transcriptoma
10.
Cell Rep ; 28(13): 3462-3473.e5, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31553914

RESUMO

Cell replacement is currently being explored as a therapeutic approach for neurodegenerative disease. Using stem cells as a source, transplantable progenitors can now be generated under conditions compliant with clinical application in patients. In this study, we elucidate factors controlling target-appropriate innervation and circuitry integration of human embryonic stem cell (hESC)-derived grafts after transplantation to the adult brain. We show that cell-intrinsic factors determine graft-derived axonal innervation, whereas synaptic inputs from host neurons primarily reflect the graft location. Furthermore, we provide evidence that hESC-derived dopaminergic grafts transplanted in a long-term preclinical rat model of Parkinson's disease (PD) receive synaptic input from subtypes of host cortical, striatal, and pallidal neurons that are known to regulate the function of endogenous nigral dopamine neurons. This refined understanding of how graft neurons integrate with host circuitry will be important for the design of clinical stem-cell-based replacement therapies for PD, as well as for other neurodegenerative diseases.


Assuntos
Gânglios da Base/fisiopatologia , Células-Tronco Embrionárias Humanas/metabolismo , Doença de Parkinson/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos Nus , Ratos
11.
J Comp Neurol ; 526(13): 2133-2146, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30007046

RESUMO

Dopamine (DA) neurons derived from human embryonic stem cells (hESCs) are a promising unlimited source of cells for cell replacement therapy in Parkinson's disease (PD). A number of studies have demonstrated functionality of DA neurons originating from hESCs when grafted to the striatum of rodent and non-human primate models of PD. However, several questions remain in regard to their axonal outgrowth potential and capacity to integrate into host circuitry. Here, ventral midbrain (VM) patterned hESC-derived progenitors were grafted into the midbrain of 6-hydroxydopamine-lesioned rats, and analyzed at 6, 18, and 24 weeks for a time-course evaluation of specificity and extent of graft-derived fiber outgrowth as well as potential for functional recovery. To investigate synaptic integration of the transplanted cells, we used rabies-based monosynaptic tracing to reveal the origin and extent of host presynaptic inputs to grafts at 6 weeks. The results reveal the capacity of grafted neurons to extend axonal projections toward appropriate forebrain target structures progressively over 24 weeks. The timing and extent of graft-derived dopaminergic fibers innervating the dorsolateral striatum matched reduction in amphetamine-induced rotational asymmetry in the animals where recovery could be observed. Monosynaptic tracing demonstrated that grafted cells integrate with host circuitry 6 weeks after transplantation, in a manner that is comparable with endogenous midbrain connectivity. Thus, we demonstrate that VM patterned hESC-derived progenitors grafted to midbrain have the capacity to extensively innervate appropriate forebrain targets, integrate into the host circuitry and that functional recovery can be achieved when grafting fetal or hESC-derived DA neurons to the midbrain.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/transplante , Mesencéfalo/cirurgia , Vias Neurais/fisiologia , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Transtornos Parkinsonianos/cirurgia , Prosencéfalo/fisiologia , Sinapses/fisiologia , Anfetamina/farmacologia , Animais , Inibidores da Captação de Dopamina/farmacologia , Feminino , Humanos , Hidroxidopaminas , Camundongos , Fibras Nervosas/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Ratos Nus , Transplante de Células-Tronco , Comportamento Estereotipado/efeitos dos fármacos
12.
Nat Commun ; 9(1): 84, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311559

RESUMO

Neural progenitor cell (NPC) transplantation has high therapeutic potential in neurological disorders. Functional restoration may depend on the formation of reciprocal connections between host and graft. While it has been reported that axons extending out of neural grafts in the brain form contacts onto phenotypically appropriate host target regions, it is not known whether adult, injured host axons regenerating into NPC grafts also form appropriate connections. We report that spinal cord NPCs grafted into the injured adult rat spinal cord self-assemble organotypic, dorsal horn-like domains. These clusters are extensively innervated by regenerating adult host sensory axons and are avoided by corticospinal axons. Moreover, host axon regeneration into grafts increases significantly after enrichment with appropriate neuronal targets. Together, these findings demonstrate that injured adult axons retain the ability to recognize appropriate targets and avoid inappropriate targets within neural progenitor grafts, suggesting that restoration of complex circuitry after SCI may be achievable.


Assuntos
Axônios/fisiologia , Neurônios Motores/fisiologia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/transplante , Células Receptoras Sensoriais/fisiologia , Corno Dorsal da Medula Espinal/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Feminino , Masculino , Células-Tronco Neurais/fisiologia , Ratos , Medula Espinal/citologia , Transplante de Células-Tronco
13.
Sci Rep ; 7: 40285, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071742

RESUMO

Transdifferentiation has been described as a novel method for converting human fibroblasts into induced cardiomyocyte-like cells. Such an approach can produce differentiated cells to study physiology or pathophysiology, examine drug interactions or toxicities, and engineer cardiac tissues. Here we describe the transdifferentiation of human dermal fibroblasts towards the cardiac cell lineage via the induced expression of transcription factors GATA4, TBX5, MEF2C, MYOCD, NKX2-5, and delivery of microRNAs miR-1 and miR-133a. Cells undergoing transdifferentiation expressed ACTN2 and TNNT2 and partially organized their cytoskeleton in a cross-striated manner. The conversion process was associated with significant upregulation of a cohort of cardiac-specific genes, activation of pathways associated with muscle contraction and physiology, and downregulation of fibroblastic markers. We used a genetically encoded calcium indicator and readily detected active calcium transients although no spontaneous contractions were observed in transdifferentiated cells. Finally, we determined that inhibition of Janus kinase 1, inhibition of Glycogen synthase kinase 3, or addition of NRG1 significantly enhanced the efficiency of transdifferentiation. Overall, we describe a method for achieving transdifferentiation of human dermal fibroblasts into induced cardiomyocyte-like cells via transcription factor overexpression, microRNA delivery, and molecular pathway manipulation.


Assuntos
Linhagem da Célula/genética , Transdiferenciação Celular/genética , Fibroblastos/citologia , Miócitos Cardíacos/citologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Transdiferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , MicroRNAs/genética , Proteínas Nucleares/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Transativadores/genética , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
14.
Stem Cell Reports ; 8(6): 1525-1533, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28479302

RESUMO

Neural progenitor cells grafted to sites of spinal cord injury have supported electrophysiological and functional recovery in several studies. Mechanisms associated with graft-related improvements in outcome appear dependent on functional synaptic integration of graft and host systems, although the extent and diversity of synaptic integration of grafts with hosts are unknown. Using transgenic mouse spinal neural progenitor cell grafts expressing the TVA and G-protein components of the modified rabies virus system, we initiated monosynaptic tracing strictly from graft neurons placed in sites of cervical spinal cord injury. We find that graft neurons receive synaptic inputs from virtually every known host system that normally innervates the spinal cord, including numerous cortical, brainstem, spinal cord, and dorsal root ganglia inputs. Thus, implanted neural progenitor cells receive an extensive range of host neural inputs to the injury site, potentially enabling functional restoration across multiple systems.


Assuntos
Vírus da Raiva/metabolismo , Traumatismos da Medula Espinal/patologia , Animais , Proteínas Aviárias/metabolismo , Diferenciação Celular , Células Cultivadas , Gânglios Espinais/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Camundongos , Camundongos Nus , Camundongos Transgênicos , Microscopia de Fluorescência , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Células-Tronco Neurais/virologia , Neurônios/metabolismo , Vírus da Raiva/genética , Receptores Virais/metabolismo , Recuperação de Função Fisiológica , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Cell Stem Cell ; 19(3): 406-14, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524438

RESUMO

Overexpression of exogenous fate-specifying transcription factors can directly reprogram differentiated somatic cells to target cell types. Here, we show that similar reprogramming can also be achieved through the direct activation of endogenous genes using engineered CRISPR/Cas9-based transcriptional activators. We use this approach to induce activation of the endogenous Brn2, Ascl1, and Myt1l genes (BAM factors) to convert mouse embryonic fibroblasts to induced neuronal cells. This direct activation of endogenous genes rapidly remodeled the epigenetic state of the target loci and induced sustained endogenous gene expression during reprogramming. Thus, transcriptional activation and epigenetic remodeling of endogenous master transcription factors are sufficient for conversion between cell types. The rapid and sustained activation of endogenous genes in their native chromatin context by this approach may facilitate reprogramming with transient methods that avoid genomic integration and provides a new strategy for overcoming epigenetic barriers to cell fate specification.


Assuntos
Sistemas CRISPR-Cas/genética , Epigênese Genética , Fibroblastos/citologia , Loci Gênicos , Neurônios/citologia , Transativadores/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Marcadores Genéticos , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
16.
Biomaterials ; 35(20): 5327-5336, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24709523

RESUMO

Cellular reprogramming holds tremendous potential for cell therapy and regenerative medicine. Recently, fibroblasts have been directly converted into induced neurons (iNs) by overexpression of the neuronal transcription factors Ascl1, Brn2 and Myt1L. Hypothesizing that cell-topography interactions could influence the fibroblast-to-neuron reprogramming process, we investigated the effects of various topographies on iNs produced by direct reprogramming. Final iN purity and conversion efficiency were increased on micrograting substrates. Neurite branching was increased on microposts and decreased on microgratings, with a simplified dendritic arbor characterized by the reduction of MAP2(+) neurites. Neurite outgrowth increased significantly on various topographies. DNA microarray analysis detected 20 differentially expressed genes in iNs reprogrammed on smooth versus microgratings, and quantitative PCR (qPCR) confirmed the upregulation of Vip and downregulation of Thy1 and Bmp5 on microgratings. Electrophysiology and calcium imaging verified the functionality of these iNs. This study demonstrates the potential of applying topographical cues to optimize cellular reprogramming.


Assuntos
Reprogramação Celular , Fibroblastos/citologia , Neurônios/citologia , Animais , Materiais Biocompatíveis/química , Técnicas de Cultura de Células , Células Cultivadas , Expressão Gênica , Imuno-Histoquímica , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuritos , Neurogênese/efeitos dos fármacos , Medicina Regenerativa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
PLoS One ; 8(5): e63577, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23704920

RESUMO

Transient overexpression of defined combinations of master regulator genes can effectively induce cellular reprogramming: the acquisition of an alternative predicted phenotype from a differentiated cell lineage. This can be of particular importance in cardiac regenerative medicine wherein the heart lacks the capacity to heal itself, but simultaneously contains a large pool of fibroblasts. In this study we determined the cardio-inducing capacity of ten transcription factors to actuate cellular reprogramming of mouse embryonic fibroblasts into cardiomyocyte-like cells. Overexpression of transcription factors MYOCD and SRF alone or in conjunction with Mesp1 and SMARCD3 enhanced the basal but necessary cardio-inducing effect of the previously reported GATA4, TBX5, and MEF2C. In particular, combinations of five or seven transcription factors enhanced the activation of cardiac reporter vectors, and induced an upregulation of cardiac-specific genes. Global gene expression analysis also demonstrated a significantly greater cardio-inducing effect when the transcription factors MYOCD and SRF were used. Detection of cross-striated cells was highly dependent on the cell culture conditions and was enhanced by the addition of valproic acid and JAK inhibitor. Although we detected Ca(2+) transient oscillations in the reprogrammed cells, we did not detect significant changes in resting membrane potential or spontaneously contracting cells. This study further elucidates the cardio-inducing effect of the transcriptional networks involved in cardiac cellular reprogramming, contributing to the ongoing rational design of a robust protocol required for cardiac regenerative therapies.


Assuntos
Reprogramação Celular , Proteínas Cromossômicas não Histona/metabolismo , Fator de Transcrição GATA4/metabolismo , Fatores de Transcrição MEF2/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Citoesqueleto/metabolismo , Fenômenos Eletrofisiológicos , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Fator de Resposta Sérica/metabolismo , Sus scrofa , Transativadores/metabolismo , Transcrição Gênica , Transcriptoma/genética
18.
Mol Ther Nucleic Acids ; 1: e32, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23344148

RESUMO

Transdifferentiation, where differentiated cells are reprogrammed into another lineage without going through an intermediate proliferative stem cell-like stage, is the next frontier of regenerative medicine. Wernig et al. first described the direct conversion of fibroblasts into functional induced neuronal cells (iNs). Subsequent reports of transdifferentiation into clinically relevant neuronal subtypes have further endorsed the prospect of autologous cell therapy for neurodegenerative disorders. So far, all published neuronal transdifferentiation protocols rely on lentiviruses, which likely precludes their clinical translation. Instead, we delivered plasmids encoding neuronal transcription factors (Brn2, Ascl1, Myt1l) to primary mouse embryonic fibroblasts with a bioreducible linear poly(amido amine). The low toxicity and high transfection efficiency of this gene carrier allowed repeated dosing to sustain high transgene expression levels. Serial 0.5 µg cm(-2) doses of reprogramming factors delivered at 48-hour intervals produced up to 7.6% Tuj1(+) (neuron-specific class III ß-tubulin) cells, a subset of which expressed MAP2 (microtubule-associated protein 2), tau, and synaptophysin. A synapsin-red fluorescent protein (RFP) reporter helped to identify more mature, electrophysiologically active cells, with 24/26 patch-clamped RFP(+) cells firing action potentials. Some non-virally induced neuronal cells (NiNs) were observed firing multiple and spontaneous action potentials. This study demonstrates the feasibility of nonviral neuronal transdifferentiation, and may be amenable to other transdifferentiation processes.

19.
Biomaterials ; 32(14): 3611-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21334062

RESUMO

Optimization of nonviral gene delivery typically focuses on the design of particulate carriers that are endowed with desirable membrane targeting, internalization, and endosomal escape properties. Topographical control of cell transfectability, however, remains a largely unexplored parameter. Emerging literature has highlighted the influence of cell-topography interactions on modulation of many cell phenotypes, including protein expression and cytoskeletal behaviors implicated in endocytosis. Using high-throughput screening of primary human dermal fibroblasts cultured on a combinatorial library of microscale topographies, we have demonstrated an improvement in nonviral transfection efficiency for cells cultured on dense micropit patterns compared to smooth substrates, as verified with flow cytometry. A 25% increase in GFP(+) cells was observed independent of proliferation rate, accompanied by SEM and confocal microscopy characterization to help explain the phenomenon qualitatively. This finding encourages researchers to investigate substrate topography as a new design consideration for the optimization of nonviral transfection systems.


Assuntos
Fibroblastos/metabolismo , Vetores Genéticos/química , Transfecção/métodos , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Humanos , Microscopia Confocal , Microscopia Eletrônica de Varredura
20.
Nano Today ; 5(6): 553-569, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21383869

RESUMO

Significant effort continues to be exerted toward the improvement of transfection mediated by nonviral vectors. These endeavors are often focused on the design of particulate carriers with properties that encourage efficient accumulation at the membrane surface, particle uptake, and endosomal escape. Despite its demonstrated importance in successful nonviral transfection, relatively little investigation has been done to understand the pressures driving internalized vectors into favorable nondegradative endocytic pathways. Improvements in transfection efficiency have been noted for complexes delivered with a substrate-mediated approach, but the reasons behind such enhancements remain unclear. The phenotypic changes exhibited by cells interacting with nano- and micro-featured substrates offer hints that may explain these effects. This review describes nanoscale particulate and substrate parameters that influence both the uptake of nonviral gene carriers and the endocytic phenotype of interacting cells, and explores the molecular links that may mediate these interactions. Substrate-mediated control of endocytosis represents an exciting new design parameter that will guide the creation of efficient transgene carriers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA