Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinform Biol Insights ; 18: 11779322241230214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333003

RESUMO

6-Pyruvoyl tetrahydropterin synthase (6-PTPS) is a lyase involved in the synthesis of tetrahydrobiopterin. In Plasmodium species where dihydroneopterin aldolase (DHNA) is absent, it acts in the folate biosynthetic pathway necessary for the growth and survival of the parasite. The 6-pyruvoyl tetrahydropterin synthase of Plasmodium falciparum (PfPTPS) has been identified as a potential antimalarial drug target. This study identified potential inhibitors of PfPTPS using molecular docking techniques. Molecular docking and virtual screening of 62 compounds including the control to the deposited Protein Data Bank (PDB) structure was carried out using AutoDock Vina in PyRx. Five of the compounds, N,N-dimethyl-N'-[4-oxo-6-(2,2,5-trimethyl-1,3-dioxolan-4-yl)-3H-pteridin-2-yl]methanimidamide (140296439), 2-amino-6-[(1R)-3-cyclohexyl-1-hydroxypropyl]-3H-pteridin-4-one (140296495), 2-(2,3-dihydroxypropyl)-8,9-dihydro-6H-pyrimido[2,1-b]pteridine-7,11-dione (144380406), 2-(dimethylamino)-6-[(2,2-dimethyl-1,3-dioxolan-4-yl)-hydroxymethyl]-3H-pteridin-4-one (135573878), and [1-acetyloxy-1-(2-methyl-4-oxo-3H-pteridin-6-yl)propan-2-yl] acetate (136075207), showed better binding affinity than the control ligand, biopterin (135449517), and were selected and screened. Three conformers of 140296439 with the binding energy of -7.2, -7.1, and -7.0 kcal/mol along with 140296495 were better than the control at -5.7 kcal/mol. In silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies predicted good pharmacokinetic properties of all the compounds while reporting a high risk of irritant toxicity in 140296439 and 144380406. The study highlights the five compounds, 140296439, 140296495, 144380406, 135573878 and 136075207, as potential inhibitors of PfPTPS and possible compounds for antimalarial drug development.

2.
Front Med (Lausanne) ; 9: 1022429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714108

RESUMO

Plasmodium falciparum (Pf) 5-aminolevulinic acid synthase (5-ALAS) is an essential enzyme with high selectivity during liver stage development, signifying its potential as a prophylactic antimalarial drug target. The aim of this study was to identify important potential lead compounds which can serve as inhibitors of Pf 5-ALAS using pharmacophore modeling, virtual screening, qualitative structural assessment, in silico ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) evaluation and molecular dynamics simulation. The best model of the tertiary structure of Pf 5-ALAS was obtained using MolProbity, while the following databases were explored for the pharmacophore-based virtual screening: CHEMBL, ChemDiv, ChemSpace, MCULE, MCULE-ULTIMATE, MolPort, NCI Open Chemical Repository, LabNetwork and ZINC databases. 2,621 compounds were screened against the modeled Pf 5-ALAS using AutoDock vina. The post-screening analysis was carried out using Discovery Studio while molecular dynamics simulation was performed on the best hits using NAMD-VMD and Galaxy Europe platform. Compound CSMS00081585868 was observed as the best hit with a binding affinity of -9.9 kcal/mol and predicted Ki of 52.10 nM, engaging in seven hydrogen bonds with the target's active site amino acid residues. The in silico ADMET prediction showed that all ten best hits possessed relatively good pharmacokinetic properties. The qualitative structural assessment of the best hit, CSMS00081585868, revealed that the presence of two pyridine scaffolds bearing hydroxy and fluorine groups linked by a pyrrolidine scaffold contributed significantly to its ability to have a strong binding affinity with the receptor. The best hit also showed stability in the active site of Pf 5-ALAS as confirmed from the RMSD obtained during the MD simulation.

3.
Infect Genet Evol ; 97: 105194, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968763

RESUMO

The increased resistance to the currently effective antimalarial drugs against Plasmodium falciparum has necessitated the development of new drugs for malaria treatment. Many proteins have been predicted using various means as potential drug targets for the treatment of the P. falciparum malaria infection. Meanwhile, only a few studies went on to predict the 3-dimensional (3D) structure of potential target. Therefore, this study aimed to predict potential antimalarial drug targets against the deadliest malaria parasite P. falciparum as well as to determine the 3D structure and possible inhibitors of one of the targets. We employed machine learning approach to predict suitable drug targets in P. falciparum. Five of the predicted protein targets were considered as potential drug targets as they were non-homologous to their human counterparts. Out of these, we determined the physicochemical properties, predicted the 3D structure and carried out docking-based virtual screening of P. falciparum RNA pseudouridylate synthase, putative (PfRPuSP). The PfRPuSP was one of the potential five target proteins. Homology modelling and the ab initio methods were used to predict the 3D structure of PfRPuSP. Then, a compound library of 5621 molecules was constructed from PubChem and ChEMBL databases using 5-fluorouridine as the control inhibitor. Docking-based virtual screening was performed using Autodock 4.2 and Autodock Vina to select compounds with high binding affinity. A total of 11 compounds were selected based on their binding energies from 881 compounds which were manually examined after docking. Seven of the 11 compounds that exhibited remarkable interactions with the residues in the active sites of PfRPuSP were analysed. These compounds performed favourably when compared to the control inhibitor and predicted to bind better than 5-fluorouridine. These seven compounds are suggested as new potential lead structures for antimalarial treatment.


Assuntos
Antimaláricos/farmacologia , Transferases Intramoleculares/química , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Plasmodium falciparum/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA