Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Prosthet Dent ; 123(4): 641-646, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31353106

RESUMO

STATEMENT OF PROBLEM: High flexural strength is one of the desirable properties for denture base resins, yet only few studies have evaluated the physical properties of newer denture bases such as computer-aided design and computer aided manufacturing (CAD-CAM) milled products. PURPOSE: The purpose of this in vitro study was to compare the flexural strength of 3 different types of denture base resins: compression molded, injection molded, and CAD-CAM milled. MATERIAL AND METHODS: Three groups (n=10) of acrylic denture base resins were tested: injection molded, compression molded, and CAD-CAM milled resin. ISO-compliant, rectangular specimens were fabricated (64×10×3.3 mm) (n=30). Specimens were stored in water for 1 week, and flexural strength was measured by using a 3-point bend test until failure. The Student t test was used to evaluate differences in the flexural strength and modulus of elasticity among specimen groups. The Bonferroni formula was used to set significance at α=.017 to account for multiple comparisons among the 3 groups. RESULTS: The flexural strength of the CAD-CAM milled group was significantly higher than that of the other 2 groups (P<.001), while the strength of the compression molded group was significantly greater than that of the injection molded group (P<.001). The flexural modulus of the CAD-CAM group was significantly higher than that of the other 2 groups (P<.001). CONCLUSIONS: CAD-CAM milled denture bases may be a useful alternative to conventionally processed denture bases in situations where increased resistance to flexural strength is needed.


Assuntos
Resinas Acrílicas , Bases de Dentadura , Desenho Assistido por Computador , Materiais Dentários , Resistência à Flexão , Humanos , Teste de Materiais , Polimetil Metacrilato
2.
Anim Reprod Sci ; 266: 107495, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796865

RESUMO

The study investigated the impact of resveratrol (RES) on bull sperm cryopreservation employing conventional slow (CS) and ultra-rapid (UR) freezing methods on sperm quality and in vitro fertility. Twenty-four ejaculates from four bulls were divided into four groups based on the cryopreservation method and RES addition: CS-RES (n = 80), CS-Co (n = 80), UR-RES (n = 24), and UR-Co (n = 24). The CS freezing involved exposing sperm straws with 5% glycerol to liquid nitrogen (LN2) vapors, while UR freezing submerged sperm drops with 100 mM sucrose directly into LN2. Overall, sperm kinematic parameters and integrity of plasma and acrosome membranes significantly decreased (P < 0.001) after cryopreservation. Post-thaw values of motilities (total [TM] and progressive [PSM]), velocities (curvilinear and straight-line), beat cross frequency (BCF), and sperm with intact plasma membrane/intact acrosome (PI-/PNA-) were higher (P < 0.05) with CS-RES and CS-Co treatments compared to UR-RES and UR-Co treatments. CS-RES treatment resulted in greater percentages (P < 0.05) of TM, PSM, PI-/PNA-, and fertility (blastocyst rate) than their control, CS-Co; while UR-RES showed higher BCF values (P < 0.05) than its control, UR-Co. Additionally, UR-RES treatment exhibited lower oxidative stress percentages than UR-Co (P < 0.05). This study presents the following conclusions: (1) the CS freezing resulted in better cryosurvival of bull sperm than UR freezing; (2) the RES supplementation to CS freezing medium improved sperm motility, membrane integrity, and fertility; and (3) despite low cryosurvival sperm and fertility, the RES addition to ultra-rapid freezing medium reduced oxidative stress.


Assuntos
Criopreservação , Crioprotetores , Resveratrol , Análise do Sêmen , Preservação do Sêmen , Espermatozoides , Masculino , Animais , Bovinos/fisiologia , Resveratrol/farmacologia , Resveratrol/administração & dosagem , Criopreservação/veterinária , Criopreservação/métodos , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Análise do Sêmen/veterinária , Crioprotetores/farmacologia , Fertilidade/efeitos dos fármacos , Congelamento , Antioxidantes/farmacologia
3.
Invest Ophthalmol Vis Sci ; 65(8): 10, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958972

RESUMO

Purpose: Retinopathy of prematurity (ROP) results from postnatal hyperoxia exposure in premature infants and is characterized by aberrant neovascularization of retinal blood vessels. Epithelial membrane protein-2 (EMP2) regulates hypoxia-inducible factor (HIF)-induced vascular endothelial growth factor (VEGF) production in the ARPE-19 cell line and genetic knock-out of Emp2 in a murine oxygen-induced retinopathy (OIR) model attenuates neovascularization. We hypothesize that EMP2 blockade via intravitreal injection protects against neovascularization. Methods: Ex vivo choroid sprouting assay was performed, comparing media and human IgG controls versus anti-EMP2 antibody (Ab) treatment. In vivo, eyes from wild-type (WT) mice exposed to hyperoxia from postnatal (P) days 7 to 12 were treated with P12 intravitreal injections of control IgG or anti-EMP2 Abs. Neovascularization was assessed at P17 by flat mount imaging. Local and systemic effects of anti-EMP2 Ab treatment were assessed. Results: Choroid sprouts treated with 30 µg/mL of anti-EMP2 Ab demonstrated a 48% reduction in vessel growth compared to control IgG-treated sprouts. Compared to IgG-treated controls, WT OIR mice treated with 4 µg/g of intravitreal anti-EMP2 Ab demonstrated a 42% reduction in neovascularization. They demonstrated down-regulation of retinal gene expression in pathways related to vasculature development and up-regulation in genes related to fatty acid oxidation and tricarboxylic acid cycle respiratory electron transport, compared to controls. Anti-EMP2 Ab-treated OIR mice did not exhibit gross retinal histologic abnormalities, vision transduction abnormalities, or weight loss. Conclusions: Our results suggest that EMP2 blockade could be a local and specific treatment modality for retinal neovascularization in oxygen-induced retinopathies, without systemic adverse effects.


Assuntos
Animais Recém-Nascidos , Modelos Animais de Doenças , Injeções Intravítreas , Camundongos Endogâmicos C57BL , Oxigênio , Neovascularização Retiniana , Retinopatia da Prematuridade , Animais , Camundongos , Oxigênio/toxicidade , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/prevenção & controle , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Hiperóxia/complicações , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Humanos
4.
Mol Cancer Ther ; 23(6): 890-903, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38417138

RESUMO

Epithelial membrane protein-2 (EMP2) is upregulated in a number of tumors and therefore remains a promising target for mAb-based therapy. In the current study, image-guided therapy for an anti-EMP2 mAb was evaluated by PET in both syngeneic and immunodeficient cancer models expressing different levels of EMP2 to enable a better understanding of its tumor uptake and off target accumulation and clearance. The therapeutic efficacy of the anti-EMP2 mAb was initially evaluated in high- and low-expressing tumors, and the mAb reduced tumor load for the high EMP2-expressing 4T1 and HEC-1-A tumors. To create an imaging agent, the anti-EMP2 mAb was conjugated to p-SCN-Bn-deferoxamine (DFO) and radiolabeled with 89Zr. Tumor targeting and tissue biodistribution were evaluated in syngeneic tumor models (4T1, CT26, and Panc02) and human tumor xenograft models (Ramos, HEC-1-A, and U87MG/EMP2). PET imaging revealed radioactive accumulation in EMP2-positive tumors within 24 hours after injection, and the signal was retained for 5 days. High specific uptake was observed in tumors with high EMP2 expression (4T1, CT26, HEC-1-A, and U87MG/EMP2), with less accumulation in tumors with low EMP2 expression (Panc02 and Ramos). Biodistribution at 5 days after injection revealed that the tumor uptake ranged from 2 to approximately 16%ID/cc. The results show that anti-EMP2 mAbs exhibit EMP2-dependent tumor uptake with low off-target accumulation in preclinical cancer models. The development of improved anti-EMP2 Ab fragments may be useful to track EMP2-positive tumors for subsequent therapeutic interventions.


Assuntos
Glicoproteínas de Membrana , Radioisótopos , Zircônio , Animais , Humanos , Camundongos , Glicoproteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral , Feminino , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Distribuição Tecidual , Anticorpos Monoclonais , Modelos Animais de Doenças
5.
Cancers (Basel) ; 16(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38672563

RESUMO

Breast cancer (BC) remains among the most commonly diagnosed cancers in women worldwide. Triple-negative BC (TNBC) is a subset of BC characterized by aggressive behavior, a high risk of distant recurrence, and poor overall survival rates. Chemotherapy is the backbone for treatment in patients with TNBC, but outcomes remain poor compared to other BC subtypes, in part due to the lack of recognized functional targets. In this study, the expression of the tetraspan protein epithelial membrane protein 2 (EMP2) was explored as a predictor of TNBC response to standard chemotherapy. We demonstrate that EMP2 functions as a prognostic biomarker for patients treated with taxane-based chemotherapy, with high expression at both transcriptomic and protein levels following treatment correlating with poor overall survival. Moreover, we show that targeting EMP2 in combination with docetaxel reduces tumor load in syngeneic and xenograft models of TNBC. These results provide support for the prognostic and therapeutic potential of this tetraspan protein, suggesting that anti-EMP2 therapy may be beneficial for the treatment of select chemotherapy-resistant TNBC tumors.

6.
Acta Histochem ; 125(1): 151976, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455339

RESUMO

OBJECTIVES: Epithelial membrane protein 2 (EMP2) is a cell surface protein composed of approximately 160 amino acids and encoded by the growth arrest-specific 3 (GAS3)/peripheral myelin protein 22 kDa (PMP22) gene family. Although EMP2 expression has been investigated in several diseases, much remains unknown regarding its mechanism of action and the extent of its role in pathogenesis. Our aim was to perform a systematic review on the involvement of EMP2 in disease processes and the current usage of anti-EMP2 therapies. METHODS: A Boolean search of the English-language medical literature was performed. PubMed, Scopus, Cochrane, and Web of Science were used to identify relevant citations. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: 52 studies met the inclusion criteria for qualitative analysis. Of those, 28 (53.8%) were human-only studies, 11 (21.2%) were animal-only studies, and 13 (25%) studies included both human and animal models. Furthermore, 34 (65.4%) studies focused on EMP2's role in neoplasms, while the remaining 18 (34.6%) articles evaluated its role in other pathologies. CONCLUSION: Overall, the evidence suggests the mechanisms of action of EMP2 are context dependent. Promising results have been produced by utilizing EMP2 as a biomarker and therapeutic target. More studies are warranted to better understand the mechanism and comprehend the role of EMP2 in the pathogenesis of diseases.


Assuntos
Glicoproteínas de Membrana , Proteínas de Membrana , Animais , Humanos , Glicoproteínas de Membrana/metabolismo
7.
Cancers (Basel) ; 15(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36765787

RESUMO

Glioblastoma, a WHO grade IV astrocytoma, constitutes approximately half of malignant tumors of the central nervous system. Despite technological advancements and aggressive multimodal treatment, prognosis remains dismal. The highly vascularized nature of glioblastoma enables the tumor cells to grow and invade the surrounding tissue, and vascular endothelial growth factor-A (VEGF-A) is a critical mediator of this process. Therefore, over the past decade, angiogenesis, and more specifically, the VEGF signaling pathway, has emerged as a therapeutic target for glioblastoma therapy. This led to the FDA approval of bevacizumab, a monoclonal antibody designed against VEGF-A, for treatment of recurrent glioblastoma. Despite the promising preclinical data and its theoretical effectiveness, bevacizumab has failed to improve patients' overall survival. Furthermore, several other anti-angiogenic agents that target the VEGF signaling pathway have also not demonstrated survival improvement. This suggests the presence of other compensatory angiogenic signaling pathways that surpass the anti-angiogenic effects of these agents and facilitate vascularization despite ongoing VEGF signaling inhibition. Herein, we review the current state of anti-angiogenic agents, discuss potential mechanisms of anti-angiogenic resistance, and suggest potential avenues to increase the efficacy of this therapeutic approach.

8.
Sci Rep ; 12(1): 19432, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371458

RESUMO

Pathologic retinal neovascularization is a potentially blinding consequence seen in many common diseases including diabetic retinopathy, retinopathy of prematurity, and retinal vaso-occlusive diseases. This study investigates epithelial membrane protein 2 (EMP2) and its role as a possible modulator of angiogenesis in human retinal pigment epithelium (RPE) under hypoxic conditions. To study its effects, the RPE cell line ARPE-19 was genetically modified to either overexpress EMP2 or knock down its levels, and RNA sequencing and western blot analysis was performed to confirm the changes in expression at the RNA and protein level, respectively. Protein expression was evaluated under both normoxic conditions or hypoxic stress. Capillary tube formation assays with human umbilical vein endothelial cells (HUVEC) were used to evaluate functional responses. EMP2 expression was found to positively correlate with expression of pro-angiogenic factors HIF1α and VEGF at both mRNA and protein levels under hypoxic conditions. Mechanistically, EMP2 stabilized HIF1α expression through downregulation of von Hippel Lindau protein (pVHL). EMP2 mediated changes in ARPE-19 cells were also found to alter the secretion of a paracrine factor(s) in conditioned media that can regulate HUVEC migration and capillary tube formation in in vitro functional angiogenesis assays. This study identifies EMP2 as a potential mediator of angiogenesis in a human RPE cell line. EMP2 levels positively correlate with pro-angiogenic mediators HIF1α and VEGF, and mechanistically, EMP2 regulates HIF1α through downregulation of pVHL. This study supports further investigation of EMP2 as a promising novel target for therapeutic treatment of pathologic neovascularization in the retina.


Assuntos
Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular , Recém-Nascido , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Patológica/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Membrana/metabolismo , Pigmentos da Retina/metabolismo , Glicoproteínas de Membrana/metabolismo
9.
J Reprod Immunol ; 145: 103309, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33774530

RESUMO

Epithelial membrane protein 2 (EMP2) is a tetraspan membrane protein that has been revealed in cancer and placental models to mediate a number of vascular responses. Recently, Emp2 modulation has been shown to have an immunologic effect on uterine NK cell recruitment in the mouse placenta. Given the importance of immune cell populations on both placental vascularization and maternal immune tolerance of the developing fetus, we wanted to better characterize the immunologic effects of Emp2 at the placental-fetal interface. We performed flow cytometry of WT and Emp2 KO C57Bl/6 mouse uterine horns at GD12.5 to characterize immune cell populations localized to the various components of the maternal-fetal interface. We found that Emp2 KO decidua and placenta showed an elevated overall percentage of CD45+ cells compared to WT. Characterization of CD45+ cells in the decidua of Emp2 KO dams revealed an increase in NK cells, whereas in the placenta, Emp2 KO dams showed an increased percentage of M1 macrophages (with an increased ratio of M1/M2 macrophages). Given the differences detected in uNK cell populations in the decidua, we further characterized the interaction between Emp2 genetic KO and NK cell deletion via anti-asialo GM1 antibody injections. While the double knock-out of Emp2 and NK cells did not alter individual pup birthweight, it significantly reduced total litter weight and size by ∼50 %. In conclusion, Emp2 appears to regulate uNK and macrophage cell populations in pregnancy.


Assuntos
Decídua/imunologia , Histocompatibilidade Materno-Fetal , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , Animais , Decídua/metabolismo , Feminino , Tolerância Imunológica , Imunidade Inata , Células Matadoras Naturais/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Modelos Animais , Gravidez
10.
Invest Ophthalmol Vis Sci ; 61(2): 3, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32031575

RESUMO

Purpose: Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. ROP occurs as a consequence of postnatal hyperoxia exposure in premature infants, resulting in vasoproliferation in the retina. The tetraspan protein epithelial membrane protein-2 (EMP2) is highly expressed in the retinal pigment epithelium (RPE) in adults, and it controls vascular endothelial growth factor (VEGF) production in the ARPE-19 cell line. We, therefore, hypothesized that Emp2 knockout (Emp2 KO) protects against neovascularization in murine oxygen-induced retinopathy (OIR). Methods: Eyes were obtained from wildtype (WT) and Emp2 KO mouse pups at P7, P12, P17, and P21 after normoxia or hyperoxia (P7-P12) exposure. Following hyperoxia exposure, RNA sequencing was performed using the retina/choroid layers obtained from WT and Emp2 KO at P17. Retinal sections from P7, P12, P17, and P21 were evaluated for Emp2, hypoxia-inducible factor 1α (Hif1α), and VEGF expression. Whole mount images were generated to assess vaso-obliteration at P12 and neovascularization at P17. Results: Emp2 KO OIR mice demonstrated a decrease in pathologic neovascularization at P17 compared with WT OIR mice through evaluation of retinal vascular whole mount images. This protection was accompanied by a decrease in Hif1α at P12 and VEGFA expression at P17 in Emp2 KO animals compared with the WT animals in OIR conditions. Collectively, our results suggest that EMP2 enhances the effects of neovascularization through modulation of angiogenic signaling. Conclusions: The protection of Emp2 KO mice against pathologic neovascularization through attenuation of HIF and VEGF upregulation in OIR suggests that hypoxia-induced upregulation of EMP2 expression in the neuroretina modulates HIF-mediated neuroretinal VEGF expression.


Assuntos
Glicoproteínas de Membrana/fisiologia , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/patologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Animais Recém-Nascidos , Linhagem Celular , Hiperóxia/fisiopatologia , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/patologia , Oxigênio/toxicidade , Epitélio Pigmentado da Retina/metabolismo , Vasos Retinianos/patologia , Regulação para Cima/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA