Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35008931

RESUMO

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) participates in the regulation of cellular stress and inflammatory responses, but its function in neuropathic pain remains poorly understood. This study evaluated the role of RIPK1 in neuropathic pain following inferior alveolar nerve injury. We developed a model using malpositioned dental implants in male Sprague Dawley rats. This model resulted in significant mechanical allodynia and upregulated RIPK1 expression in the trigeminal subnucleus caudalis (TSC). The intracisternal administration of Necrosatin-1 (Nec-1), an RIPK1 inhibitor, blocked the mechanical allodynia produced by inferior alveolar nerve injury The intracisternal administration of recombinant rat tumor necrosis factor-α (rrTNF-α) protein in naive rats produced mechanical allodynia and upregulated RIPK1 expression in the TSC. Moreover, an intracisternal pretreatment with Nec-1 inhibited the mechanical allodynia produced by rrTNF-α protein. Nerve injury caused elevated TNF-α concentration in the TSC and a TNF-α block had anti-allodynic effects, thereby attenuating RIPK1 expression in the TSC. Finally, double immunofluorescence analyses revealed the colocalization of TNF receptor and RIPK1 with astrocytes. Hence, we have identified that astroglial RIPK1, activated by the TNF-α pathway, is a central driver of neuropathic pain and that the TNF-α-mediated RIPK1 pathway is a potential therapeutic target for reducing neuropathic pain following nerve injury.


Assuntos
Hiperalgesia/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Neuralgia do Trigêmeo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hiperalgesia/genética , Masculino , Neuralgia , Ratos , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Neuralgia do Trigêmeo/genética
2.
Korean J Physiol Pharmacol ; 22(5): 539-546, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30181700

RESUMO

Botulinum toxin type A (BoNT/A) has been used therapeutically for various conditions including dystonia, cerebral palsy, wrinkle, hyperhidrosis and pain control. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) receive orofacial nociceptive information from primary afferents and transmit the information to higher brain center. Although many studies have shown the analgesic effects of BoNT/A, the effects of BoNT/A at the central nervous system and the action mechanism are not well understood. Therefore, the effects of BoNT/A on the spontaneous postsynaptic currents (sPSCs) in the SG neurons were investigated. In whole cell voltage clamp mode, the frequency of sPSCs was increased in 18 (37.5%) neurons, decreased in 5 (10.4%) neurons and not affected in 25 (52.1%) of 48 neurons tested by BoNT/A (3 nM). Similar proportions of frequency variation of sPSCs were observed in 1 and 10 nM BoNT/A and no significant differences were observed in the relative mean frequencies of sPSCs among 1-10 nM BoNT/A. BoNT/A-induced frequency increase of sPSCs was not affected by pretreated tetrodotoxin (0.5 µM). In addition, the frequency of sIPSCs in the presence of CNQX (10 µM) and AP5 (20 µM) was increased in 10 (53%) neurons, decreased in 1 (5%) neuron and not affected in 8 (42%) of 19 neurons tested by BoNT/A (3 nM). These results demonstrate that BoNT/A increases the frequency of sIPSCs on SG neurons of the Vc at least partly and can provide an evidence for rapid action of BoNT/A at the central nervous system.

3.
Korean J Physiol Pharmacol ; 22(3): 331-341, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29719455

RESUMO

The aim of the present study was to examine the effects of preemptive analgesia on the development of trigeminal neuropathic pain. For this purpose, mechanical allodynia was evaluated in male Sprague-Dawley rats using chronic constriction injury of the infraorbital nerve (CCI-ION) and perineural application of 2% QX-314 to the infraorbital nerve. CCI-ION produced severe mechanical allodynia, which was maintained until postoperative day (POD) 30. An immediate single application of 2% QX-314 to the infraorbital nerve following CCI-ION significantly reduced neuropathic mechanical allodynia. Immediate double application of QX-314 produced a greater attenuation of mechanical allodynia than a single application of QX-314. Immediate double application of 2% QX-314 reduced the CCI-ION-induced upregulation of GFAP and p-p38 expression in the trigeminal ganglion. The upregulated p-p38 expression was co-localized with NeuN, a neuronal cell marker. We also investigated the role of voltage-gated sodium channels (Navs) in the antinociception produced by preemptive application of QX-314 through analysis of the changes in Nav expression in the trigeminal ganglion following CCI-ION. Preemptive application of QX-314 significantly reduced the upregulation of Nav1.3, 1.7, and 1.9 produced by CCI-ION. These results suggest that long-lasting blockade of the transmission of pain signaling inhibits the development of neuropathic pain through the regulation of Nav isoform expression in the trigeminal ganglion. Importantly, these results provide a potential preemptive therapeutic strategy for the treatment of neuropathic pain after nerve injury.

4.
Korean J Physiol Pharmacol ; 21(1): 65-74, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28066142

RESUMO

Here we investigated the central processing mechanisms of mechanical allodynia and found a direct excitatory link with low-threshold input to nociceptive neurons. Experiments were performed on male Sprague-Dawley rats weighing 230-280 g. Subcutaneous injection of interleukin 1 beta (IL-1ß) (1 ng/10 µL) was used to produce mechanical allodynia and thermal hyperalgesia. Intracisternal administration of bicuculline, a gamma aminobutyric acid A (GABAA) receptor antagonist, produced mechanical allodynia in the orofacial area under normal conditions. However, intracisternal administration of bicuculline (50 ng) produced a paradoxical anti-allodynic effect under inflammatory pain conditions. Pretreatment with resiniferatoxin (RTX), which depletes capsaicin receptor protein in primary afferent fibers, did not alter the paradoxical anti-allodynic effects produced by the intracisternal injection of bicuculline. Intracisternal injection of bumetanide, an Na-K-Cl cotransporter (NKCC 1) inhibitor, reversed the IL-1ß-induced mechanical allodynia. In the control group, application of GABA (100 µM) or muscimol (3 µM) led to membrane hyperpolarization in gramicidin perforated current clamp mode. However, in some neurons, application of GABA or muscimol led to membrane depolarization in the IL-1ß-treated rats. These results suggest that some large myelinated Aß fibers gain access to the nociceptive system and elicit pain sensation via GABAA receptors under inflammatory pain conditions.

5.
Korean J Physiol Pharmacol ; 19(4): 349-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26170739

RESUMO

We examined the effects of peripherally or centrally administered botulinum neurotoxin type A (BoNT-A) on orofacial inflammatory pain to evaluate the antinociceptive effect of BoNT-A and its underlying mechanisms. The experiments were carried out on male Sprague-Dawley rats. Subcutaneous (3 U/kg) or intracisternal (0.3 or 1 U/kg) administration of BoNT-A significantly inhibited the formalin-induced nociceptive response in the second phase. Both subcutaneous (1 or 3 U/kg) and intracisternal (0.3 or 1 U/kg) injection of BoNT-A increased the latency of head withdrawal response in the complete Freund's adjuvant (CFA)-treated rats. Intracisternal administration of N-methyl-D-aspartate (NMDA) evoked nociceptive behavior via the activation of trigeminal neurons, which was attenuated by the subcutaneous or intracisternal injection of BoNT-A. Intracisternal injection of NMDA up-regulated c-Fos expression in the trigeminal neurons of the medullary dorsal horn. Subcutaneous (3 U/kg) or intracisternal (1 U/kg) administration of BoNT-A significantly reduced the number of c-Fos immunoreactive neurons in the NMDA-treated rats. These results suggest that the central antinociceptive effects the peripherally or centrally administered BoNT-A are mediated by transcytosed BoNT-A or direct inhibition of trigeminal neurons. Our data suggest that central targets of BoNT-A might provide a new therapeutic tool for the treatment of orofacial chronic pain conditions.

6.
J Oral Biosci ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908515

RESUMO

BACKGROUND: Botulinum toxin type A (BTX-A), produced by the gram-positive anaerobic bacterium Clostridium botulinum, acts by cleaving synaptosome-associated protein-25 (SNAP-25), an essential component of the presynaptic neuronal membrane that is necessary for fusion with the membrane proteins of neurotransmitter-containing vesicles. Recent studies have highlighted the efficacy of BTX-A in treating chronic pain conditions, including lower back pain, chronic neck pain, neuropathic pain, and trigeminal neuralgia, particularly when patients are unresponsive to traditional painkillers. This review focuses on the analgesic effects of BTX-A in various chronic pain conditions, with a particular emphasis on the orofacial region. HIGHLIGHT: This review focuses on the mechanisms by which BTX-A induces analgesia in patients with inflammatory and temporomandibular joint pain. This review also highlights the fact that BTX-A can effectively manage neuropathic pain and trigeminal neuralgia, which are difficult-to-treat chronic pain conditions. Herein, we present a comprehensive assessment of the central analgesic effects of BTX-A and a discussion of its various applications in clinical dental practice. CONCLUSION: BTX-A is an approved treatment option for various chronic pain conditions. Although there is evidence of axonal transport of BTX-A from peripheral to central endings in motor neurons, the precise mechanism underlying its pain-modulating effects remains unclear. This review discusses the evidence supporting the effectiveness of BTX-A in controlling chronic pain conditions in the orofacial region. BTX-A is a promising therapeutic agent for treating pain conditions that do not respond to conventional analgesics.

7.
Biomedicines ; 11(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38137500

RESUMO

The present study examined the underlying mechanisms of mechanical allodynia and thermal hyperalgesia induced by the intracisternal injection of angiotensin (Ang) II. Intracisternal Ang II injection decreased the air puff threshold and head withdrawal latency. To determine the operative receptors for each distinct type of pain behavior, we intracisternally injected Ang II receptor antagonists 2 h after Ang II injection. Losartan, an Ang II type 1 receptor (AT1R) antagonist, alleviated mechanical allodynia. Conversely, PD123319, an Ang II type 1 receptor (AT2R) antagonist, blocked only thermal hyperalgesia. Immunofluorescence analyses revealed the co-localization of AT1R with the astrocyte marker GFAP in the trigeminal subnucleus caudalis and co-localization of AT2R with CGRP-positive neurons in the trigeminal ganglion. Intracisternal pretreatment with minocycline, a microglial inhibitor, did not affect Ang II-induced mechanical allodynia, whereas L-α-aminoadipate, an astrocyte inhibitor, significantly inhibited Ang II-induced mechanical allodynia. Furthermore, subcutaneous pretreatment with botulinum toxin type A significantly alleviated Ang II-induced thermal hyperalgesia, but not Ang II-induced mechanical allodynia. These results indicate that central Ang II-induced nociception is differentially regulated by AT1R and AT2R. Thus, distinct therapeutic targets must be regulated to overcome pain symptoms caused by multiple underlying mechanisms.

8.
Mol Pain ; 8: 16, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22429647

RESUMO

BACKGROUND: In our present study, we studied the role of demyelination of the trigeminal nerve root in the development of prolonged nociceptive behavior in the trigeminal territory. RESULTS: Under anesthesia, the Sprague-Dawley rats were mounted onto a stereotaxic frame and 3 µL of lysophosphatidic acid (LPA, 1 nmol) was injected into the trigeminal nerve root to produce demyelination. This treatment decreased the air-puff thresholds, persisted until postoperative day 130, and then returned to the preoperative levels 160 days after LPA injection. The LPA-treated rats also showed a significant hyper-responsiveness to pin-prick stimulation. We further investigated the antinociceptive and neuroprotective effects of progesterone in rats undergoing demyelination of the trigeminal nerve root. Progesterone (8, 16 mg/kg/day) was administered subcutaneously, beginning on the operative day, for five consecutive days in the LPA-treated rats. Treatment with progesterone produced significant early anti-allodynic effects and delayed prolonged anti-allodynic effects. The expression of protein zero (P0) and peripheral myelin protein 22 (PMP22) were significantly down-regulated in the trigeminal nerve root on postoperative day 5 following LPA injection. This down-regulation of the P0 and PMP22 levels was blocked by progesterone treatment. CONCLUSIONS: These results suggest that progesterone produces antinociceptive effects through neuroprotective action in animals with LPA-induced trigeminal neuropathic pain. Moreover, progesterone has potential utility as a novel therapy for trigeminal neuropathic pain relief at an appropriate managed dose and is therefore a possible future treatment strategy for improving the recovery from injury.


Assuntos
Analgésicos/farmacologia , Lisofosfolipídeos/farmacologia , Microinjeções , Fármacos Neuroprotetores/farmacologia , Progesterona/farmacologia , Nervo Trigêmeo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Hiperalgesia/patologia , Lisofosfolipídeos/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley , Nervo Trigêmeo/patologia
9.
J Neurosci Res ; 89(2): 153-61, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21162123

RESUMO

The excitatory synapses on the jaw-closing (JC) motoneurons mediate the neuronal input that ensures smooth and rhythmic movements of the jaw. Recently, we have shown that the neurotransmitter phenotype of the inhibitory boutons onto JC motoneurons shifts from GABA to glycine, and new inhibitory synapses onto JC motoneurons are continuously formed during postnatal development (Paik et al. [2007] J. Comp. Neurol. 503:779­789). To test whether the developmental pattern of the excitatory synapses onto JC motoneurons differs from that of the inhibitory synapses, we studied the distribution of glutamate-immunopositive boutons onto the rat JC motoneurons during postnatal development by using a combination of retrograde labeling with horseradish peroxidase (HRP), postembedding immunogold staining, and quantitative ultrastructural analysis. The analysis of 175, 281, and 465 boutons contacting somata of JC motoneurons at postnatal days P2, P11, and P31, respectively, revealed that the number of glutamate-immunopositive (Glut(+)) boutons increased by 2.6 times from P2 to P11 and showed no significant change after that, whereas the length of apposition of these boutons increased continuously from P2 to P31, suggesting that the time course for the development of Glut(+) boutons differed from that for Glut(-) boutons, most of which were immunopositive for GABA and/or glycine. Our findings indicate that excitatory and inhibitory synapses onto JC motoneurons exhibit distinctly different developmental patterns that may be closely related to the maturation of the masticatory system.


Assuntos
Arcada Osseodentária/inervação , Neurônios Motores/ultraestrutura , Neurogênese , Terminações Pré-Sinápticas/ultraestrutura , Núcleos do Trigêmeo/ultraestrutura , Animais , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Arcada Osseodentária/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleos do Trigêmeo/crescimento & desenvolvimento , Núcleos do Trigêmeo/metabolismo
10.
J Pain Res ; 13: 1173-1183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547180

RESUMO

BACKGROUND: Although the Eph receptor plays an important role in the development of neuropathic pain following nerve injury, there has been no evidence of the participation of the ephrin A4 receptor (EphA4) in the development of trigeminal neuropathic pain. The present study investigated the role of EphA4 in central nociceptive processing in rats with inferior alveolar nerve injury. MATERIALS AND METHODS: Male Sprague-Dawley rats were used in all our experiments. A rat model for trigeminal neuropathic pain was produced using malpositioned dental implants. The left mandibular second molar was extracted under anesthesia, followed by the placement of a miniature dental implant to injure the inferior alveolar nerve. RESULTS: Our current findings show that nerve injury induced by malpositioned dental implants evokes significant mechanical allodynia and up-regulation of EphA4 expression in the ipsilateral trigeminal subnucleus caudalis. Although daily treatment with EphA4-Fc, an EphA4 antagonist, did not produce prolonged anti-allodynic effects after the chronic neuropathic pain had been already established, an early treatment protocol with repeated EphA4-Fc administration significantly attenuated mechanical allodynia before initiation of chronic neuropathic pain. Finally, we confirmed the participation of the central EphA4 pathway in the development of trigeminal neuropathic pain by reducing EphA4 expression using EphA4 siRNA. This suppression of EphA4 produced significantly prolonged anti-allodynic effects. CONCLUSION: These results suggest that early blockade of central EphA4 signaling provides a new therapeutic target for the treatment of trigeminal neuropathic pain.

11.
Pain Res Manag ; 2020: 7934164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294086

RESUMO

Mannitol has recently been reported to be effective in enhancing the antinociceptive efficacy of lidocaine. No single study to date, however, has compared diphenhydramine with and without mannitol for nociceptive processing as an alternative local anesthetic. In this study, we examined the antinociceptive efficacy enhancements of diphenhydramine when combined with mannitol. Male Sprague-Dawley rats weighing 230-260 g were used in a hot plate test to evaluate the antinociceptive effects of diphenhydramine. All chemicals were dissolved in isotonic normal saline and administered subcutaneously into the plantar surface of the right hind paw at 10 min before the hot plate test. A subcutaneous injection of 0.5% or 1% diphenhydramine produced significant inhibition of the withdrawal latency time compared with the vehicle treatment. Antinociceptive effects appeared 10 min after the diphenhydramine injections and persisted for over 30 min. The antinociceptive effects of 1% diphenhydramine were not statistically different from those of 1% lidocaine. Although a subcutaneous injection of a 0.5 M mannitol solution alone did not affect the withdrawal latency time, 1% diphenhydramine with 0.5 M mannitol significantly enhanced antinociception. A subcutaneous injection of 1% diphenhydramine with epinephrine (1 : 100,000) solution did not increase the antinociceptive effect of the diphenhydramine. These results suggest that diphenhydramine with mannitol can be used as an alternative local anesthetic.


Assuntos
Analgésicos/administração & dosagem , Anestésicos Locais/administração & dosagem , Difenidramina/administração & dosagem , Manitol/administração & dosagem , Medição da Dor/efeitos dos fármacos , Anestesia Local/métodos , Animais , Sinergismo Farmacológico , Injeções Subcutâneas , Lidocaína/administração & dosagem , Masculino , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley
12.
Mol Pain ; 5: 50, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19725970

RESUMO

Group I mGluRs (mGluR1 and 5) pre- and/or postsynaptically regulate synaptic transmission at glutamatergic synapses. By recording spontaneous EPSCs (sEPSCs) in the spinal trigeminal subnucleus oralis (Vo), we here investigated the regulation of glutamatergic transmission through the activation of group I mGluRs. Bath-applied DHPG (10 microM/5 min), activating the group I mGluRs, increased sEPSCs both in frequency and amplitude; particularly, the increased amplitude was long-lasting. The DHPG-induced increases of sEPSC frequency and amplitude were not NMDA receptor-dependent. The DHPG-induced increase in the frequency of sEPSCs, the presynaptic effect being further confirmed by the DHPG effect on paired-pulse ratio of trigeminal tract-evoked EPSCs, an index of presynaptic modulation, was significantly but partially reduced by blockades of voltage-dependent sodium channel, mGluR1 or mGluR5. Interestingly, PKC inhibition markedly enhanced the DHPG-induced increase of sEPSC frequency, which was mainly accomplished through mGluR1, indicating an inhibitory role of PKC. In contrast, the DHPG-induced increase of sEPSC amplitude was not affected by mGluR1 or mGluR5 antagonists although the long-lasting property of the increase was disappeared; however, the increase was completely inhibited by blocking both mGluR1 and mGluR5. Further study of signal transduction mechanisms revealed that PLC and CaMKII mediated the increases of sEPSC in both frequency and amplitude by DHPG, while IP3 receptor, NO and ERK only that of amplitude during DHPG application. Altogether, these results indicate that the activation of group I mGluRs and their signal transduction pathways differentially regulate glutamate release and synaptic responses in Vo, thereby contributing to the processing of somatosensory signals from orofacial region.


Assuntos
Receptores de Glutamato Metabotrópico/fisiologia , Transdução de Sinais/fisiologia , Animais , Feminino , Imuno-Histoquímica , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/agonistas , Transdução de Sinais/efeitos dos fármacos
13.
J Comp Neurol ; 506(4): 627-39, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18067147

RESUMO

Trigeminal primary afferents expressing P2X(3) receptor are involved in the transmission of orofacial nociceptive information. However, little is known about their central projection pattern and ultrastructural features within the trigeminal brainstem sensory nuclei (TBSN). Here we use multiple immunofluorescence and electron microscopy to characterize the P2X(3)-immunopositive (+) neurons in the trigeminal ganglion and describe the distribution and synaptic organization of their central terminals within the rat TBSN, including nuclei principalis (Vp), oralis (Vo), interpolaris (Vi), and caudalis (Vc). In the trigeminal ganglion, P2X(3) immunoreactivity was mainly in small and medium-sized somata, but also frequently in large somata. Although most P2X(3) (+) somata costained for the nonpeptidergic marker IB4, few costained for the peptidergic marker substance P. Most P2X(3) (+) fibers in the sensory root of trigeminal ganglion (92.9%) were unmyelinated, whereas the rest were small myelinated. In the TBSN, P2X(3) immunoreactivity was dispersed in the rostral TBSN but was dense in the superficial laminae of Vc, especially in the inner lamina II. The P2X(3) (+) terminals contained numerous clear, round vesicles and sparse large, dense-core vesicles. Typically, they were presynaptic to one or two dendritic shafts and also frequently postsynaptic to axonal endings, containing pleomorphic vesicles. Such P2X(3) (+) terminals, showing glomerular shape and complex synaptic relationships, and those exhibiting axoaxonic contacts, were more frequently seen in Vp than in any other TBSN. These results suggest that orofacial nociceptive information may be transmitted via P2X(3) (+) afferents to all TBSN and that it may be processed differently in different TBSN.


Assuntos
Neurônios Aferentes/metabolismo , Receptores Purinérgicos P2/metabolismo , Gânglio Trigeminal/metabolismo , Nervo Trigêmeo/metabolismo , Núcleos do Trigêmeo/metabolismo , Vias Aferentes/metabolismo , Vias Aferentes/ultraestrutura , Animais , Tamanho Celular , Masculino , Microscopia Imunoeletrônica , Fibras Nervosas Amielínicas/metabolismo , Fibras Nervosas Amielínicas/ultraestrutura , Neurônios Aferentes/ultraestrutura , Nociceptores/metabolismo , Nociceptores/ultraestrutura , Lectinas de Plantas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3 , Substância P/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Gânglio Trigeminal/ultraestrutura , Nervo Trigêmeo/ultraestrutura , Núcleos do Trigêmeo/ultraestrutura
14.
J Neurosci Methods ; 167(2): 221-8, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17900704

RESUMO

Spinal trigeminal nucleus (Vsp) consists of three subnuclei: oralis (Vo), interpolaris (Vi) and caudalis (Vc). Previous anatomical studies using antero-/retro-grade tracers have suggested that intersubnuclear ascending/descending synaptic transmissions exist between subnuclei. However, pharmacological properties of the intersubnuclear synaptic transmission have not been studied yet. Since three subnuclei are located in Vsp along rostro-caudal axis, it will be necessary to prepare horizontal brainstem slices to perform pharmacological analysis of the intersubnuclear synaptic transmission. We here show horizontal brainstem slices retaining three subnuclei, and that, using blind whole-cell recordings in the slices, synaptic transmission may be abundantly retained between subnuclei in the horizontal slices, except for the transmission from Vo to Vc. Finally, pharmacological analysis shows that excitatory and inhibitory synaptic responses, respectively, are mediated by AMPA and NMDA receptors and by GABA(A) and glycine receptors, with a differential contribution to the synaptic responses between subnuclei. We therefore conclude that horizontal brainstem slices will be a useful preparation for studies on intersubnuclear synaptic transmission, modulation and plasticity between subnuclei, as well as, further, other brainstem nuclei.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Sinapses/fisiologia , Núcleo Espinal do Trigêmeo/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Animais Recém-Nascidos , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Feminino , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos da radiação , Masculino , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/citologia , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Valina/análogos & derivados , Valina/farmacologia
15.
J Comp Neurol ; 526(14): 2204-2214, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29907955

RESUMO

Parvalbumin (PV), calretinin (CR), calbindin D-28k (CB), stage specific embryonic antigen-4 (SSEA4), and phosphorylated neurofilament 200 (pNF200) have been commonly used as markers for primary afferent neurons with large myelinated (A) fibers but detailed information on the expression of these markers in specific primary afferent fiber types is still lacking. We here examined the fibers that express PV, CR, CB, SSEA4, and pNF200 in the trigeminal ganglion and its peripheral sensory root by light- and electron-microscopic immunohistochemistry and quantitative analysis. We found that all CR-immunopositive (+), CB+, and SSEA4+ fibers and virtually all (98.8%) PV+ fibers were myelinated, most CR+ fibers were large myelinated, whereas most CB+ and SSEA4+ fibers were small myelinated. One half of the PV+ fibers were small myelinated and the other half were large myelinated. Of all pNF200+ fibers, about a third each were small myelinated, large myelinated, and unmyelinated. These findings suggest that PV, CR, CB, and SSEA4 can be used as specific markers for primary afferent neurons with myelinated fibers, but that pNF200 is not suitable as a specific marker for primary afferent neurons with myelinated fibers, and also raise the possibility that PV, CR, CB, and SSEA4 may be expressed in both mechanoreceptive and nociceptive neurons.


Assuntos
Fibras Nervosas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/ultraestrutura , Animais , Marcadores Genéticos , Imuno-Histoquímica , Masculino , Neurônios Aferentes/metabolismo , Ratos , Ratos Sprague-Dawley
16.
J Comp Neurol ; 503(6): 779-89, 2007 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-17570498

RESUMO

We have previously described the distribution pattern of inhibitory synapses on rat jaw-closing (JC) alpha- and gamma-motoneurons. In the present study, we investigated developmental changes in inhibitory synapses on JC motoneurons. We performed a quantitative ultrastructural analysis of putative inhibitory synaptic boutons on JC motoneuron somata by using postembedding immunogold labeling for GABA and glycine. In total, 206, 350, and 497 boutons contacting JC motoneuron somata were analyzed at postnatal days 2 (P2), 11 (P11) and 31 (P31), respectively. The size of the somata increased significantly during postnatal development. The size distribution was bimodal at P31. Mean length of the boutons and percentage of synaptic covering also increased during postnatal development, whereas bouton density did not differ significantly among the three age groups. Synaptic boutons on the somata of JC alpha-motoneurons could be classified into four types: boutons immunoreactive for 1) GABA only, 2) glycine only, 3) both GABA and glycine, and 4) neither GABA nor glycine. There was no developmental change in the proportion of putative inhibitory boutons to the total number of studied boutons. However, the glycine-only boutons increased significantly (15.1% to 27.3%), and the GABA-only boutons decreased significantly (17.7% to 2.6%) during the period from P11 to P31. Our ultrastructural data indicate that the inhibitory synaptic input to JC motoneurons is developmentally regulated and that there is a postnatal switch from GABA to glycine. The postnatal changes revealed in the present study could play an important role in the maturation of the oral motor system.


Assuntos
Glicina/metabolismo , Arcada Osseodentária/inervação , Neurônios Motores/citologia , Terminações Pré-Sinápticas/ultraestrutura , Nervo Trigêmeo/crescimento & desenvolvimento , Ácido gama-Aminobutírico/metabolismo , Animais , Imuno-Histoquímica , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Nervo Trigêmeo/metabolismo
17.
Sci Rep ; 7(1): 13627, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051582

RESUMO

The purinergic receptor P2X3, expressed in the central terminals of primary nociceptive neurons in the brainstem, plays an important role in pathological pain. However, little is known about expression of P2X3 in the brainstem astrocytes and its involvement in craniofacial pathologic pain. To address this issue, we investigated the expression of P2X3 in astrocytes in the trigeminal caudal nucleus (Vc) in a rat model of craniofacial neuropathic pain, chronic constriction injury of infraorbital nerve (CCI-ION). We found that 1) P2X3-immunoreactivity is observed in the brainstem astrocytes, preferentially in their fine processes, 2) the number of P2X3-positive fine astrocytic processes and the density of P2X3 in these processes were increased significantly in CCI-ION rats, compared to control rats, and 3) administration of MPEP, a specific mGluR5 antagonist, alleviated the mechanical allodynia and abolished the increase in density of P2X3 in fine astrocytic processes caused by CCI-ION. These findings reveal preferential expression of P2X3 in the fine astrocytic processes in the brainstem, propose a novel role of P2X3 in the fine astrocytic process in the mechanism of craniofacial neuropathic pain, and suggest that the expression of astrocytic P2X3 may be regulated by astrocytic mGluR5.


Assuntos
Dor Facial/patologia , Receptores Purinérgicos P2X3/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Dor Facial/complicações , Dor Facial/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Hiperalgesia/etiologia , Masculino , Microscopia Eletrônica , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3/genética
18.
Brain Res Bull ; 70(4-6): 378-85, 2006 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17027773

RESUMO

The present study investigated the role of peripheral group I metabotropic glutamate receptors (mGluRs) in MO-induced nociceptive behaviour and inflammation in the masseter muscles of lightly anesthetized rats. Experiments were carried out on male Sprague-Dawley rats weighing 300-400 g. After initial anesthesia with sodium pentobarbital (40 mg/kg, i.p.), one femoral vein was cannulated and connected to an infusion pump for intravenous infusion of sodium pentobarbital. The rate of infusion was adjusted to provide a constant level of anesthesia. Mustard oil (MO, 30 microl) was injected into the mid-region of the left masseter muscle via a 30-gauge needle over 10s. After 30 microl injection of 5, 10, 15, or 20% MO into the masseter muscle, the total number of hindpaw shaking behaviour and extravasated Evans' blue dye concentration in the masseter muscle were significantly higher in the MO-treated group in a dose-dependent manner compared with the vehicle (mineral oil)-treated group. Intramuscular pretreatment with 3 or 5% lidocaine reduced MO-induced hindpaw shaking behaviour and increases in extravasated Evans' blue dye concentration. Intramuscular pretreatment with 5 mM MCPG, non-selective group I/II mGluR antagonist, or MPEP, a selective group I mGluR5 antagonist, produced a significant attenuation of MO-induced hindpaw shaking behaviour and increases in extravasated Evans' blue dye concentration in the masseter muscle while LY367385, a selective group I mGluR1 antagonist, did not affect MO-induced nociceptive behaviour and inflammation in the masseter muscle. These results indicate that peripheral mGluR5 plays important role in mediating MO-induced nociceptive behaviour and inflammation in the craniofacial muscle.


Assuntos
Anestésicos Locais/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Músculos Faciais/efeitos dos fármacos , Dor Facial/tratamento farmacológico , Inflamação/tratamento farmacológico , Lidocaína/uso terapêutico , Animais , Comportamento Animal , Benzoatos/uso terapêutico , Relação Dose-Resposta a Droga , Interações Medicamentosas , Músculos Faciais/fisiopatologia , Dor Facial/induzido quimicamente , Lateralidade Funcional/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/uso terapêutico , Inflamação/induzido quimicamente , Masculino , Mostardeira , Medição da Dor/métodos , Óleos de Plantas , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley
19.
Am J Chin Med ; 44(2): 389-400, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27080947

RESUMO

The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) receives nociceptive afferent inputs from thin-myelinated A[Formula: see text] fibers and unmyelinated C fibers and has been shown to be involved in the processing of orofacial nociceptive information. Scutellaria baicalensis Georgi (Huang-Qin, SbG), one of the 50 fundamental herbs of Chinese herbology, has been used historically as anti-inflammatory and antineoplastic medicine. Baicalin, one of the major compounds of SbG, has been reported to have neuroprotective, anti-inflammatory and analgesic effects. However, the receptor type activated by baicalin and its precise action mechanism on the SG neurons of Vc have not yet been studied. The whole-cell patch clamp technique was performed to examine the ion channels activated by baicalin on the SG neurons of Vc. In high Cl[Formula: see text] pipette solution, the baicalin (300[Formula: see text][Formula: see text]M) induced repeatable inward currents ([Formula: see text][Formula: see text]pA, [Formula: see text]) without desensitization on all the SG neurons tested. Further, the inward currents showed a concentration (0.1-3[Formula: see text]mM) dependent pattern. The inward current was sustained in the presence of tetrodotoxin (0.5[Formula: see text][Formula: see text]M), a voltage sensitive Na[Formula: see text] channel blocker. In addition, baicalin-induced inward currents were reduced in the presence of picrotoxin (50[Formula: see text][Formula: see text]M), a GABAA receptor antagonist, flumazenil (100[Formula: see text][Formula: see text]M), a benzodiazepine-sensitive GABAA receptor antagonist, and strychnine (2[Formula: see text][Formula: see text]M), a glycine receptor antagonist, respectively. These results indicate that baicalin has inhibitory effects on the SG neurons of the Vc, which are due to the activation of GABAA and/or the glycine receptor. Our results suggest that baicalin may be a potential target for orofacial pain modulation.


Assuntos
Flavonoides/farmacologia , Neurônios/metabolismo , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Substância Gelatinosa/citologia , Núcleo Inferior Caudal do Nervo Trigêmeo/citologia , Envelhecimento , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Relação Dose-Resposta a Droga , Dor Facial/tratamento farmacológico , Feminino , Flavonoides/isolamento & purificação , Flavonoides/uso terapêutico , Masculino , Camundongos , Fármacos Neuroprotetores , Fitoterapia , Scutellaria baicalensis/química
20.
Neuroreport ; 16(14): 1561-4, 2005 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-16148745

RESUMO

This study examined the ultrastructures of neuronal elements within trigeminal mesencephalic nucleus by labeling masseteric mesencephalic neurons and masseter motoneurons with injection of horseradish peroxidase into masseteric muscle. Of eight horseradish peroxidase-labeled muscle spindle afferents examined, four terminals showed synaptic contact with labeled dendrites of masseteric motoneurons, two with labeled somata, and the remaining two with unlabeled dendrites. A few of the labeled dendrites showed intimate contact with the somata of the trigeminal mesencephalic nucleus neurons. These results provide morphological evidence of synaptic contact of recurring masseteric muscle spindle afferents with the trigeminal mesencephalic nucleus somata and also suggest the presence of electrical synapses between the somata of the trigeminal mesencephalic nucleus neurons and dendrites of jaw-closing motoneurons.


Assuntos
Músculo Masseter/inervação , Neurônios Motores/ultraestrutura , Neurônios/ultraestrutura , Núcleos do Trigêmeo/citologia , Animais , Dendritos/metabolismo , Dendritos/ultraestrutura , Peroxidase do Rábano Silvestre/farmacocinética , Músculo Masseter/efeitos dos fármacos , Músculo Masseter/metabolismo , Microscopia Eletrônica de Transmissão/métodos , Neurônios Motores/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA