Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Cell Proteomics ; 23(9): 100824, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39097268

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) suffers from a lack of an effective diagnostic method, which hampers improvement in patient survival. Carbohydrate antigen 19-9 (CA19-9) is the only FDA-approved blood biomarker for PDAC, yet its clinical utility is limited due to suboptimal performance. Liquid chromatography-mass spectrometry (LC-MS) has emerged as a burgeoning technology in clinical proteomics for the discovery, verification, and validation of novel biomarkers. A plethora of protein biomarker candidates for PDAC have been identified using LC-MS, yet few has successfully transitioned into clinical practice. This translational standstill is owed partly to insufficient considerations of practical needs and perspectives of clinical implementation during biomarker development pipelines, such as demonstrating the analytical robustness of proposed biomarkers which is critical for transitioning from research-grade to clinical-grade assays. Moreover, the throughput and cost-effectiveness of proposed assays ought to be considered concomitantly from the early phases of the biomarker pipelines for enhancing widespread adoption in clinical settings. Here, we developed a fit-for-purpose multi-marker panel for PDAC diagnosis by consolidating analytically robust biomarkers as well as employing a relatively simple LC-MS protocol. In the discovery phase, we comprehensively surveyed putative PDAC biomarkers from both in-house data and prior studies. In the verification phase, we developed a multiple-reaction monitoring (MRM)-MS-based proteomic assay using surrogate peptides that passed stringent analytical validation tests. We adopted a high-throughput protocol including a short gradient (<10 min) and simple sample preparation (no depletion or enrichment steps). Additionally, we developed our assay using serum samples, which are usually the preferred biospecimen in clinical settings. We developed predictive models based on our final panel of 12 protein biomarkers combined with CA19-9, which showed improved diagnostic performance compared to using CA19-9 alone in discriminating PDAC from non-PDAC controls including healthy individuals and patients with benign pancreatic diseases. A large-scale clinical validation is underway to demonstrate the clinical validity of our novel panel.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Detecção Precoce de Câncer , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/sangue , Biomarcadores Tumorais/sangue , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue , Detecção Precoce de Câncer/métodos , Proteômica/métodos , Cromatografia Líquida , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Espectrometria de Massas/métodos
2.
Anal Chem ; 94(22): 7752-7758, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609248

RESUMO

Peptide fragmentation spectra contain critical information for the identification of peptides by mass spectrometry. In this study, we developed an algorithm that more accurately predicts the high-intensity peaks among the peptide spectra. The training data are composed of 180,833 peptides from the National Institute of Standards and Technology and Proteomics Identification database, which were fragmented by either quadrupole time-of-flight or triple-quadrupole collision-induced dissociation methods. Exploratory analysis of the peptide fragmentation pattern was focused on the highest intensity peaks that showed proline, peptide length, and a sliding window of four amino acid combination that can be exploited as key features. The amino acid sequence of each peptide and each of the key features were allocated to different layers of the model, where recurrent neural network, convolutional neural network, and fully connected neural network were used. The trained model, PrAI-frag, accurately predicts the fragmentation spectra compared to previous machine learning-based prediction algorithms. The model excels at high-intensity peak prediction, which is advantageous to selective/multiple reaction monitoring application. PrAI-frag is provided via a Web server which can be used for peptides of length 6-15.


Assuntos
Aprendizado Profundo , Espectrometria de Massas em Tandem , Íons/química , Peptídeos/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
3.
Sci Rep ; 13(1): 8991, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268731

RESUMO

Mass spectrometry (MS) based proteomics is widely used for biomarker discovery. However, often, most biomarker candidates from discovery are discarded during the validation processes. Such discrepancies between biomarker discovery and validation are caused by several factors, mainly due to the differences in analytical methodology and experimental conditions. Here, we generated a peptide library which allows discovery of biomarkers in the equal settings as the validation process, thereby making the transition from discovery to validation more robust and efficient. The peptide library initiated with a list of 3393 proteins detectable in the blood from public databases. For each protein, surrogate peptides favorable for detection in mass spectrometry was selected and synthesized. A total of 4683 synthesized peptides were spiked into neat serum and plasma samples to check their quantifiability in a 10 min liquid chromatography-MS/MS run time. This led to the PepQuant library, which is composed of 852 quantifiable peptides that cover 452 human blood proteins. Using the PepQuant library, we discovered 30 candidate biomarkers for breast cancer. Among the 30 candidates, nine biomarkers, FN1, VWF, PRG4, MMP9, CLU, PRDX6, PPBP, APOC1, and CHL1 were validated. By combining the quantification values of these markers, we generated a machine learning model predicting breast cancer, showing an average area under the curve of 0.9105 for the receiver operating characteristic curve.


Assuntos
Neoplasias da Mama , Proteômica , Humanos , Feminino , Proteômica/métodos , Biblioteca de Peptídeos , Espectrometria de Massas em Tandem , Neoplasias da Mama/diagnóstico , Peptídeos/análise , Biomarcadores , Biomarcadores Tumorais
4.
Food Chem ; 153: 101-8, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24491706

RESUMO

This study was aimed to determine the contents and the association of B vitamins from seeds of 10 black and one yellow soybean (Glycine max (L.) Merr.) varieties with either green or yellow cotyledon. Thiamine, flavin adenine dinucleotide (FAD), riboflavin and total riboflavin were found highest in 'Chengjakong', while flavin mononucleotide (FMN) was greatest in 'Mirang'. Nicotinic acid and total vitamin B3 were highest in 'Shingi' as a yellow soybean variety but pantothenic acid and pyridoxine contents were greatest in 'Tawon' and 'Mirang', respectively. These content variations of B vitamins directly reflected the wide segregation of soybean varieties on the principal component analysis (PCA) scores plot, indicating that these 4 soybean varieties appeared to be least associated with other soybean varieties based on the different responses of B vitamins. The results of cluster and correlation analyses presented that the cotyledon colour of soybean seed contributed to a variation of B vitamin contents. Overall, the results suggest that a wide range of B vitamin contents would be affected by genotypic factors alongside the difference of cotyledon colour.


Assuntos
Glycine max/química , Sementes/química , Complexo Vitamínico B/análise , Riboflavina/análise , Sementes/classificação , Glycine max/classificação , Tiamina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA