Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Cancer ; 136(5): 1065-72, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25042001

RESUMO

Oncolytic Western Reserve strain vaccinia virus selective for epidermal growth factor receptor pathway mutations and tumor-associated hypermetabolism was armed with human granulocyte-macrophage colony-stimulating factor (GMCSF) and a tdTomato fluorophore. As the assessment of immunological responses to human transgenes is challenging in the most commonly used animal models, we used immunocompetent Syrian golden hamsters, known to be sensitive to human GMCSF and semipermissive to vaccinia virus. Efficacy was initially tested in vitro on various human and hamster cell lines and oncolytic potency of transgene-carrying viruses was similar to unarmed virus. The hGMCSF-encoding virus was able to completely eradicate subcutaneous pancreatic tumors in hamsters, and to fully protect the animals from subsequent rechallenge with the same tumor. Induction of specific antitumor immunity was also shown by ex vivo co-culture experiments with hamster splenocytes. In addition, histological examination revealed increased infiltration of neutrophils and macrophages in GMCSF-virus-treated tumors. These findings help clarify the mechanism of action of GMCSF-armed vaccinia viruses undergoing clinical trials.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Terapia Viral Oncolítica , Neoplasias Pancreáticas/imunologia , Vaccinia virus/genética , Replicação Viral/imunologia , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Chlorocebus aethiops , Técnicas de Cocultura , Cricetinae , DNA Viral/genética , Humanos , Técnicas Imunoenzimáticas , Macrófagos , Mesocricetus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T , Vaccinia virus/imunologia , Células Vero , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Ther Oncolytics ; 3: 16002, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27626058

RESUMO

In oncolytic virotherapy, the ability of the virus to activate the immune system is a key attribute with regard to long-term antitumor effects. Vaccinia viruses bear one of the strongest oncolytic activities among all oncolytic viruses. However, its capacity for stimulation of antitumor immunity is not optimal, mainly due to its immunosuppressive nature. To overcome this problem, we developed an oncolytic VV that expresses intracellular pattern recognition receptor DNA-dependent activator of IFN-regulatory factors (DAI) to boost the innate immune system and to activate adaptive immune cells in the tumor. We showed that infection with DAI-expressing VV increases expression of several genes related to important immunological pathways. Treatment with DAI-armed VV resulted in significant reduction in the size of syngeneic melanoma tumors in mice. When the mice were rechallenged with the same tumor, DAI-VV-treated mice completely rejected growth of the new tumor, which indicates immunity established against the tumor. We also showed enhanced control of growth of human melanoma tumors and elevated levels of human T-cells in DAI-VV-treated mice humanized with human peripheral blood mononuclear cells. We conclude that expression of DAI by an oncolytic VV is a promising way to amplify the vaccine potency of an oncolytic vaccinia virus to trigger the innate-and eventually the long-lasting adaptive immunity against cancer.

3.
Mol Ther Oncolytics ; 1: 14006, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27119097

RESUMO

Successful cancer control relies on overcoming resistance to cell death and on activation of host antitumor immunity. Oncolytic viruses are particularly attractive in this regard, as they lyse infected tumor cells and trigger robust immune responses during the infection. However, repeated injections of the same virus promote antiviral rather than antitumor immunity and tumors may mount innate antiviral defenses to restrict oncolytic virus replication. In this article, we have explored if alternating the therapy virus could circumvent these problems. We demonstrate in two virus-resistant animal models a substantial delay in antiviral immune- and innate cellular response induction by alternating injections of two immunologically distinct oncolytic viruses, adenovirus, and vaccinia virus. Our results are in support of clinical development of heterologous adeno-/vaccinia virus therapy of cancer.

4.
PLoS One ; 5(9)2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20927353

RESUMO

BACKGROUND: Adenoviruses are attractive vectors for gene therapy because of their stability in vivo and the possibility of production at high titers. Despite exciting preclinical data with various approaches, there are only a few examples of clear efficacy in clinical trials. Effective gene delivery to target cells remains the key variable determining efficacy and thus enhanced transduction methods are important. METHODS/RESULTS: We found that heated serum could enhance adenovirus 5 mediated gene delivery up to twentyfold. A new protein-level interaction was found between fiber knob and serum transthyretin, but this was not responsible for the observed effect. Instead, we found that heating caused the calcium and phosphate present in the serum mix to precipitate, and this was responsible for enhanced gene delivery. This finding could have relevance for designing preclinical experiments with adenoviruses, since calcium and phosphate are present in many solutions. To translate this into an approach potentially testable in patients, we used calcium gluconate in phosphate buffered saline, both of which are clinically approved, to increase adenoviral gene transfer up to 300-fold in vitro. Gene transfer was increased with or without heating and in a manner independent from the coxsackie-adenovirus receptor. In vivo, in mouse studies, gene delivery was increased 2-, 110-, 12- and 13-fold to tumors, lungs, heart and liver and did not result in increased pro-inflammatory cytokine induction. Antitumor efficacy of a replication competent virus was also increased significantly. CONCLUSION: In summary, adenoviral gene transfer and antitumor efficacy can be enhanced by calcium gluconate in phosphate buffered saline.


Assuntos
Adenoviridae/genética , Gluconato de Cálcio/farmacologia , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Fosfatos/farmacologia , Adenoviridae/efeitos dos fármacos , Adenoviridae/metabolismo , Animais , Soluções Tampão , Linhagem Celular Tumoral , Cricetinae , Técnicas de Transferência de Genes/instrumentação , Terapia Genética/instrumentação , Vetores Genéticos/efeitos dos fármacos , Vetores Genéticos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA