Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(10): 4281-4310, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39191946

RESUMO

Aberrant mitochondrial fission/fusion dynamics are frequently associated with pathologies, including cancer. We show that alternative splice variants of the fission protein Drp1 (DNM1L) contribute to the complexity of mitochondrial fission/fusion regulation in tumor cells. High tumor expression of the Drp1 alternative splice variant lacking exon 16 relative to other transcripts is associated with poor outcome in ovarian cancer patients. Lack of exon 16 results in Drp1 localization to microtubules and decreased association with mitochondrial fission sites, culminating in fused mitochondrial networks, enhanced respiration, changes in metabolism, and enhanced pro-tumorigenic phenotypes in vitro and in vivo. These effects are inhibited by siRNAs designed to specifically target the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the pathophysiological importance of Drp1 alternative splicing, highlight the divergent functions and consequences of changing the relative expression of Drp1 splice variants in tumor cells, and strongly warrant consideration of alternative splicing in future studies focused on Drp1.


Assuntos
Processamento Alternativo , Dinaminas , GTP Fosfo-Hidrolases , Proteínas Associadas aos Microtúbulos , Mitocôndrias , Dinâmica Mitocondrial , Proteínas Mitocondriais , Neoplasias Ovarianas , Humanos , Dinaminas/genética , Dinaminas/metabolismo , Dinâmica Mitocondrial/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Feminino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Linhagem Celular Tumoral , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Animais , Progressão da Doença , Éxons/genética , Camundongos , Regulação Neoplásica da Expressão Gênica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Microtúbulos/metabolismo , Apoptose/genética
2.
Bioessays ; 46(8): e2300166, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38873912

RESUMO

Ovarian cancer is the most lethal gynecological malignancy and is often associated with both DNA repair deficiency and extensive metabolic reprogramming. While still emerging, the interplay between these pathways can affect ovarian cancer phenotypes, including therapeutic resistance to the DNA damaging agents that are standard-of-care for this tumor type. In this review, we will discuss what is currently known about cellular metabolic rewiring in ovarian cancer that may impact DNA damage and repair in addition to highlighting how specific DNA repair proteins also promote metabolic changes. We will also discuss relevant data from other cancers that could be used to inform ovarian cancer therapeutic strategies. Changes in the choice of DNA repair mechanism adopted by ovarian cancer are a major factor in promoting therapeutic resistance. Therefore, the impact of metabolic reprogramming on DNA repair mechanisms in ovarian cancer has major clinical implications for targeted combination therapies for the treatment of this devastating disease.


Assuntos
Dano ao DNA , Reparo do DNA , Neoplasias Ovarianas , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Feminino , Animais
3.
Gynecol Oncol ; 185: 8-16, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38342006

RESUMO

OBJECTIVE: We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment in vivo and to identify novel downstream mediators of GPX3's pro-tumorigenic function. METHODS: GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model. RNA sequencing analysis was carried out in OVCAR3 cells following shRNA-mediated GPX3 knock-down to identify GPX3-dependent gene expression signatures. RESULTS: GPX3 knock-down abrogated clonogenicity and intraperitoneal tumor development in vivo, and the effects were dependent on the level of GPX3 knock-down. RNA sequencing showed that loss of GPX3 leads to decreased gene expression patterns related to pro-tumorigenic signaling pathways. Validation studies identified GDF15 as strongly dependent on GPX3. GDF15, a member of the TGF-ß growth factor family, has known oncogenic and immune modulatory activities. Similarly, GPX3 expression positively correlated with pro-tumor immune cell signatures, including regulatory T-cell and macrophage infiltration, and displayed significant correlation with PD-L1 expression. CONCLUSIONS: We show for the first time that tumor produced GPX3 is necessary for ovarian cancer growth in vivo and that it regulates expression of GDF15. The immune profile associated with GPX3 expression in serous ovarian tumors suggests that GPX3 may be an alternate marker of ovarian tumors susceptible to immune check-point inhibitors.


Assuntos
Glutationa Peroxidase , Fator 15 de Diferenciação de Crescimento , Neoplasias Ovarianas , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/biossíntese , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes
4.
Am J Physiol Cell Physiol ; 323(1): C125-C132, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35584328

RESUMO

Ovarian cancer is a highly aggressive disease with poor survival rates in part due to diagnosis after dissemination throughout the peritoneal cavity. It is well-known that inflammatory signals affect ovarian cancer dissemination. Inflammation is a hallmark of cellular senescence, a stable cell cycle arrest induced by a variety of stimuli including many of the therapies used to treat patients with ovarian cancer. Indeed, recent work has illustrated that ovarian cancer cells in vitro, mouse models, and patient tumors undergo senescence in response to platinum-based or poly(ADP-ribose) polymerase (PARP) inhibitor therapies, standard-of-care therapies for ovarian cancer. This inflammatory response, termed the senescence-associated secretory phenotype (SASP), is highly dynamic and has pleiotropic roles that can be both beneficial and detrimental in cell-intrinsic and cell-extrinsic ways. Recent data on other cancer types suggest that the SASP promotes metastasis. Here, we outline what is known about the SASP in ovarian cancer and discuss both how the SASP may promote ovarian cancer dissemination and strategies to mitigate the effects of the SASP.


Assuntos
Neoplasias Ovarianas , Fenótipo Secretor Associado à Senescência , Animais , Pontos de Checagem do Ciclo Celular , Senescência Celular , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fenótipo , Poli(ADP-Ribose) Polimerases/genética
5.
Nature ; 532(7598): 250-4, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27042933

RESUMO

Cancer is a disease of ageing. Clinically, aged cancer patients tend to have a poorer prognosis than young. This may be due to accumulated cellular damage, decreases in adaptive immunity, and chronic inflammation. However, the effects of the aged microenvironment on tumour progression have been largely unexplored. Since dermal fibroblasts can have profound impacts on melanoma progression, we examined whether age-related changes in dermal fibroblasts could drive melanoma metastasis and response to targeted therapy. Here we find that aged fibroblasts secrete a Wnt antagonist, sFRP2, which activates a multi-step signalling cascade in melanoma cells that results in a decrease in ß-catenin and microphthalmia-associated transcription factor (MITF), and ultimately the loss of a key redox effector, APE1. Loss of APE1 attenuates the response of melanoma cells to DNA damage induced by reactive oxygen species, rendering the cells more resistant to targeted therapy (vemurafenib). Age-related increases in sFRP2 also augment both angiogenesis and metastasis of melanoma cells. These data provide an integrated view of how fibroblasts in the aged microenvironment contribute to tumour progression, offering new possibilities for the design of therapy for the elderly.


Assuntos
Envelhecimento/metabolismo , Resistencia a Medicamentos Antineoplásicos , Melanoma/tratamento farmacológico , Melanoma/patologia , Proteínas de Membrana/metabolismo , Metástase Neoplásica , Microambiente Tumoral , Adulto , Animais , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Progressão da Doença , Fibroblastos/metabolismo , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Masculino , Melanoma/irrigação sanguínea , Melanoma/genética , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Neovascularização Patológica , Estresse Oxidativo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Vemurafenib , Via de Sinalização Wnt , Proteína Wnt1/antagonistas & inibidores , beta Catenina/metabolismo
6.
EMBO J ; 34(23): 2953-70, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26492917

RESUMO

The EglN2/PHD1 prolyl hydroxylase is an important oxygen sensor contributing to breast tumorigenesis. Emerging studies suggest that there is functional cross talk between oxygen sensing and mitochondrial function, both of which play an essential role for sustained tumor growth. However, the potential link between EglN2 and mitochondrial function remains largely undefined. Here, we show that EglN2 depletion decreases mitochondrial respiration in breast cancer under normoxia and hypoxia, which correlates with decreased mitochondrial DNA in a HIF1/2α-independent manner. Integrative analyses of gene expression profile and genomewide binding of EglN2 under hypoxic conditions reveal nuclear respiratory factor 1 (NRF1) motif enrichment in EglN2-activated genes, suggesting NRF1 as an EglN2 binding partner. Mechanistically, by forming an activator complex with PGC1α and NRF1 on chromatin, EglN2 promotes the transcription of ferridoxin reductase (FDXR) and maintains mitochondrial function. In addition, FDXR, as one of effectors for EglN2, contributes to breast tumorigenesis in vitro and in vivo. Our findings suggest that EglN2 regulates mitochondrial function in ERα-positive breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Fator 1 Relacionado a NF-E2/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Fator 1 Relacionado a NF-E2/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ligação Proteica , Fatores de Transcrição/genética
7.
Anal Biochem ; 568: 65-72, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605633

RESUMO

Quantification of cellular deoxyribonucleoside mono- (dNMP), di- (dNDP), triphosphates (dNTPs) and related nucleoside metabolites are difficult due to their physiochemical properties and widely varying abundance. Involvement of dNTP metabolism in cellular processes including senescence and pathophysiological processes including cancer and viral infection make dNTP metabolism an important bioanalytical target. We modified a previously developed ion pairing reversed phase chromatography-mass spectrometry method for the simultaneous quantification and 13C isotope tracing of dNTP metabolites. dNMPs, dNDPs, and dNTPs were chromatographically resolved to avoid mis-annotation of in-source fragmentation. We used commercially available 13C15N-stable isotope labeled analogs as internal standards and show that this isotope dilution approach improves analytical figures of merit. At sufficiently high mass resolution achievable on an Orbitrap mass analyzer, stable isotope resolved metabolomics allows simultaneous isotope dilution quantification and 13C isotope tracing from major substrates including 13C-glucose. As a proof of principle, we quantified dNMP, dNDP and dNTP pools from multiple cell lines. We also identified isotopologue enrichment from glucose corresponding to ribose from the pentose-phosphate pathway in dNTP metabolites.


Assuntos
Desoxirribonucleotídeos/análise , Técnicas de Diluição do Indicador , Espectrometria de Massas , Isótopos de Carbono , Células Cultivadas , Cromatografia Líquida , Desoxirribonucleotídeos/metabolismo , Humanos , Marcação por Isótopo , Isótopos de Nitrogênio
8.
Proc Natl Acad Sci U S A ; 112(28): 8638-43, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124089

RESUMO

Molecular therapies are hallmarks of "personalized" medicine, but how tumors adapt to these agents is not well-understood. Here we show that small-molecule inhibitors of phosphatidylinositol 3-kinase (PI3K) currently in the clinic induce global transcriptional reprogramming in tumors, with activation of growth factor receptors, (re)phosphorylation of Akt and mammalian target of rapamycin (mTOR), and increased tumor cell motility and invasion. This response involves redistribution of energetically active mitochondria to the cortical cytoskeleton, where they support membrane dynamics, turnover of focal adhesion complexes, and random cell motility. Blocking oxidative phosphorylation prevents adaptive mitochondrial trafficking, impairs membrane dynamics, and suppresses tumor cell invasion. Therefore, "spatiotemporal" mitochondrial respiration adaptively induced by PI3K therapy fuels tumor cell invasion, and may provide an important antimetastatic target.


Assuntos
Inibidores Enzimáticos/farmacologia , Mitocôndrias/efeitos dos fármacos , Invasividade Neoplásica , Inibidores de Fosfoinositídeo-3 Quinase , Transporte Biológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Citoesqueleto/metabolismo , Metabolismo Energético , Humanos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
10.
Cancer Gene Ther ; 31(2): 300-310, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38030811

RESUMO

Ovarian cancer is the deadliest gynecological malignancy, and accounts for over 150,000 deaths per year worldwide. The high grade serous ovarian carcinoma (HGSC) subtype accounts for almost 70% of ovarian cancers and is the deadliest. HGSC originates in the fimbria of the fallopian tube and disseminates through the peritoneal cavity. HGSC survival in peritoneal fluid requires cells to resist anoikis (anchorage-independent apoptosis). Most anoikis resistant mechanisms are dependent on microenvironment interactions with cell surface-associated proteins, such as integrins and receptor tyrosine kinases (RTKs). We previously identified the gene CASC4 as a driver of anoikis resistance. CASC4 is predicted to be a Golgi-associated protein that may regulate protein trafficking to the plasma membrane, but CASC4 is largely uncharacterized in literature; thus, we sought to determine how CASC4 confers anoikis resistance to HGSC cells. Mining of publicly available ovarian cancer datasets (TCGA) showed that CASC4 is associated with worse overall survival and increased resistance to platinum-based chemotherapies. For experiments, we cultured three human HGSC cell lines (PEO1, CaOV3, OVCAR3), and a murine HGSC cell line, (ID8) with shRNA-mediated CASC4 knockdowns (CASC4 KD) in suspension, to recapitulate the peritoneal fluid environment in vitro. CASC4 KD significantly inhibited cell proliferation and colony formation ability, and increased apoptosis. A Reverse Phase Protein Assay (RPPA) showed that CASC4 KD resulted in a broad re-programming of membrane-associated proteins. Specifically, CASC4 KD led to decreased protein levels of the RTK Epidermal Growth Factor Receptor (EGFR), an initiator of several oncogenic signaling pathways, leading us to hypothesize that CASC4 drives HGSC survival through mediating recycling and trafficking of EGFR. Indeed, loss of CASC4 led to a decrease in both EGFR membrane localization, reduced turnover of EGFR, and increased EGFR ubiquitination. Moreover, a syngeneic ID8 murine model of ovarian cancer showed that knocking down CASC4 leads to decreased tumor burden and dissemination.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Neoplasias Ovarianas/patologia , Anoikis/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Fatores de Transcrição , Microambiente Tumoral
11.
Cells ; 13(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920634

RESUMO

BACKGROUND: Identifying cells engaged in fundamental cellular processes, such as proliferation or living/death statuses, is pivotal across numerous research fields. However, prevailing methods relying on molecular biomarkers are constrained by high costs, limited specificity, protracted sample preparation, and reliance on fluorescence imaging. METHODS: Based on cellular morphology in phase contrast images, we developed a deep-learning model named Detector of Mitosis, Apoptosis, Interphase, Necrosis, and Senescence (D-MAINS). RESULTS: D-MAINS utilizes machine learning and image processing techniques, enabling swift and label-free categorization of cell death, division, and senescence at a single-cell resolution. Impressively, D-MAINS achieved an accuracy of 96.4 ± 0.5% and was validated with established molecular biomarkers. D-MAINS underwent rigorous testing under varied conditions not initially present in the training dataset. It demonstrated proficiency across diverse scenarios, encompassing additional cell lines, drug treatments, and distinct microscopes with different objective lenses and magnifications, affirming the robustness and adaptability of D-MAINS across multiple experimental setups. CONCLUSIONS: D-MAINS is an example showcasing the feasibility of a low-cost, rapid, and label-free methodology for distinguishing various cellular states. Its versatility makes it a promising tool applicable across a broad spectrum of biomedical research contexts, particularly in cell death and oncology studies.


Assuntos
Apoptose , Senescência Celular , Aprendizado Profundo , Interfase , Mitose , Necrose , Humanos , Linhagem Celular Tumoral , Neoplasias/patologia , Neoplasias/metabolismo , Processamento de Imagem Assistida por Computador/métodos
12.
bioRxiv ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39026889

RESUMO

Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear. Using a multi-omics approach, we found that the metabolic enzyme ACSS2, which converts acetate into acetyl-CoA, is both highly upregulated in quiescent ovarian cancer cells and required for their survival. Indeed, quiescent ovarian cancer cells have increased levels of acetate-derived acetyl-CoA, confirming increased ACSS2 activity in these cells. Furthermore, either inducing ACSS2 expression or supplementing cells with acetate was sufficient to induce a reversible quiescent cell cycle exit. RNA-Seq of acetate treated cells confirmed negative enrichment in multiple cell cycle pathways as well as enrichment of genes in a published G0 gene signature. Finally, analysis of patient data showed that ACSS2 expression is upregulated in tumor cells from ascites, which are thought to be more quiescent, compared to matched primary tumors. Additionally, high ACSS2 expression is associated with platinum resistance and worse outcomes. Together, this study points to a previously unrecognized ACSS2-mediated metabolic reprogramming that drives quiescence in ovarian cancer. As chemotherapies to treat ovarian cancer, such as platinum, have increased efficacy in highly proliferative cells, our data give rise to the intriguing question that metabolically-driven quiescence may affect therapeutic response.

13.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352432

RESUMO

Objective: We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment in vivo and to identify novel downstream mediators of GPX3's pro-tumorigenic function. Methods: GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model. RNA sequencing analysis was carried out in OVCAR3 cells following shRNA-mediated GPX3 knock-down to identify GPX3-dependent gene expression signatures. Results: GPX3 knock-down abrogated clonogenicity and intraperitoneal tumor development in vivo, and the effects were dependent on the level of GPX3 knock-down. RNA sequencing showed that loss of GPX3 leads to decreased gene expression patterns related to pro-tumorigenic signaling pathways. Validation studies identified GDF15 as strongly dependent on GPX3. GDF15, a member of the TGF-ß growth factor family, has known oncogenic and immune modulatory activities. Similarly, GPX3 expression positively correlated with pro-tumor immune cell signatures, including regulatory T-cell and macrophage infiltration, and displayed significant correlation with PD-L1 expression. Conclusions: We show for the first time that tumor produced GPX3 is necessary for ovarian cancer growth in vivo and that it regulates expression of GDF15. The immune profile associated with GPX3 expression in serous ovarian tumors suggests that GPX3 may be an alternate marker of ovarian tumors susceptible to immune check-point inhibitors.

14.
Mol Metab ; 89: 102031, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39304063

RESUMO

Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear. Using a multi-omics approach, we found that the metabolic enzyme ACSS2, which converts acetate into acetyl-CoA, is both highly upregulated in quiescent ovarian cancer cells and required for their survival. Indeed, quiescent ovarian cancer cells have increased levels of acetate-derived acetyl-CoA, confirming increased ACSS2 activity in these cells. Furthermore, either inducing ACSS2 expression or supplementing cells with acetate was sufficient to induce a reversible quiescent cell cycle exit. RNA-Seq of acetate treated cells confirmed negative enrichment in multiple cell cycle pathways as well as enrichment of genes in a published G0 gene signature. Finally, analysis of patient data showed that ACSS2 expression is upregulated in tumor cells from ascites, which are thought to be more quiescent, compared to matched primary tumors. Additionally, high ACSS2 expression is associated with platinum resistance and worse outcomes. Together, this study points to a previously unrecognized ACSS2-mediated metabolic reprogramming that drives quiescence in ovarian cancer. As chemotherapies to treat ovarian cancer, such as platinum, have increased efficacy in highly proliferative cells, our data give rise to the intriguing question that metabolically-driven quiescence may affect therapeutic response.


Assuntos
Acetato-CoA Ligase , Acetatos , Acetilcoenzima A , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Acetilcoenzima A/metabolismo , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Acetatos/metabolismo , Acetatos/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Ciclo Celular/efeitos dos fármacos
15.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38883769

RESUMO

DNA damage and cytoplasmic DNA induce type-1 interferon (IFN-1) and potentiate responses to immune checkpoint inhibitors. Our prior work found that inhibitors of the DNA damage response kinase ATR (ATRi) induce IFN-1 and deoxyuridine (dU) incorporation by DNA polymerases, akin to antimetabolites. Whether and how dU incorporation is required for ATRi-induced IFN-1 signaling is not known. Here, we show that ATRi-dependent IFN-1 responses require uracil DNA glycosylase (UNG)-initiated base excision repair and STING. Quantitative analyses of nine distinct nucleosides reveals that ATRi induce dU incorporation more rapidly in UNG wild-type than knockout cells, and that induction of IFN-1 is associated with futile cycles of repair. While ATRi induce similar numbers of micronuclei in UNG wild-type and knockout cells, dU containing micronuclei and cytoplasmic DNA are increased in knockout cells. Surprisingly, DNA fragments containing dU block STING-dependent induction of IFN-1, MHC-1, and PD-L1. Furthermore, UNG knockout sensitizes cells to IFN-γ in vitro , and potentiates responses to anti-PD-L1 in resistant tumors in vivo . These data demonstrate an unexpected and specific role for dU-rich DNA in suppressing STING-dependent IFN-1 responses, and show that UNG-deficient tumors have a heightened response to immune checkpoint inhibitors. STATEMENT OF SIGNIFICANCE: Antimetabolites disrupt nucleotide pools and increase dU incorporation by DNA polymerases. We show that unrepaired dU potentiates responses to checkpoint inhibitors in mouse models of cancer. Patients with low tumor UNG may respond to antimetabolites combined with checkpoint inhibitors, and patients with high tumor UNG may respond to UNG inhibitors combined with checkpoint inhibitors.

16.
Cancer Res Commun ; 4(5): 1174-1188, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626341

RESUMO

p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in approximately 50% of all human cancers. In its canonical role, p16 inhibits the G1-S-phase cell cycle progression through suppression of cyclin-dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. However, the broader impact of p16/CDKN2A loss on other nucleotide metabolic pathways and potential therapeutic targets remains unexplored. Using CRISPR knockout libraries in isogenic human and mouse melanoma cell lines, we determined several nucleotide metabolism genes essential for the survival of cells with loss of p16/CDKN2A. Consistently, many of these genes are upregulated in melanoma cells with p16 knockdown or endogenously low CDKN2A expression. We determined that cells with low p16/CDKN2A expression are sensitive to multiple inhibitors of de novo purine synthesis, including antifolates. Finally, tumors with p16 knockdown were more sensitive to the antifolate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2Alow tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents. SIGNIFICANCE: Antimetabolites were the first chemotherapies, yet many have failed in the clinic due to toxicity and poor patient selection. Our data suggest that p16 loss provides a therapeutic window to kill cancer cells with widely-used antifolates with relatively little toxicity.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Purinas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Metotrexato/farmacologia , Purinas/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico
17.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37790404

RESUMO

Aberrant mitochondrial fission/fusion dynamics have been reported in cancer cells. While post translational modifications are known regulators of the mitochondrial fission/fusion machinery, we show that alternative splice variants of the fission protein Drp1 (DNM1L) have specific and unique roles in cancer, adding to the complexity of mitochondrial fission/fusion regulation in tumor cells. Ovarian cancer specimens express an alternative splice transcript variant of Drp1 lacking exon 16 of the variable domain, and high expression of this splice variant relative to other transcripts is associated with poor patient outcome. Unlike the full-length variant, expression of Drp1 lacking exon 16 leads to decreased association of Drp1 to mitochondrial fission sites, more fused mitochondrial networks, enhanced respiration, and TCA cycle metabolites, and is associated with a more metastatic phenotype in vitro and in vivo. These pro-tumorigenic effects can also be inhibited by specific siRNA-mediated inhibition of the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the significance of the pathophysiological consequences of Drp1 alternative splicing and divergent functions of Drp1 splice variants, and strongly warrant consideration of Drp1 splicing in future studies.

18.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370789

RESUMO

Homologous recombination (HR) deficiency enhances sensitivity to DNA damaging agents commonly used to treat cancer. In HR-proficient cancers, metabolic mechanisms driving response or resistance to DNA damaging agents remain unclear. Here we identified that depletion of alpha-ketoglutarate (αKG) sensitizes HR-proficient cells to DNA damaging agents by metabolic regulation of histone acetylation. αKG is required for the activity of αKG-dependent dioxygenases (αKGDDs), and prior work has shown that changes in αKGDD affect demethylases. Using a targeted CRISPR knockout library consisting of 64 αKGDDs, we discovered that Trimethyllysine Hydroxylase Epsilon (TMLHE), the first and rate-limiting enzyme in de novo carnitine synthesis, is necessary for proliferation of HR-proficient cells in the presence of DNA damaging agents. Unexpectedly, αKG-mediated TMLHE-dependent carnitine synthesis was required for histone acetylation, while histone methylation was affected but dispensable. The increase in histone acetylation via αKG-dependent carnitine synthesis promoted HR-mediated DNA repair through site- and substrate-specific histone acetylation. These data demonstrate for the first time that HR-proficiency is mediated through αKG directly influencing histone acetylation via carnitine synthesis and provide a metabolic avenue to induce HR-deficiency and sensitivity to DNA damaging agents.

19.
Cancer Immunol Res ; 11(4): 401-404, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36826438

RESUMO

Senescent cancer cells alter their microenvironment through secretion of pro-inflammatory cytokines and chemokines called the senescence-associated secretory phenotype (SASP) and upregulation of immunoinhibitory proteins such as CD80 and programmed death-ligand 1. The senescence field is just beginning to explore the role of these changes on antitumor immunity and response to immunotherapy. In this Perspective, we highlight a new study that aimed to determine how senescent breast cancer cells are shielded from immunosurveillance via upregulation of redundant immunoinhibitory proteins in two distinct senescent populations. We also discuss recent articles regarding how the SASP alters the tumor immune microenvironment and response to immunotherapy. As many therapies used to treat cancers induce senescence, future work will need to better refine the composition of the SASP and heterogeneity of senescence in the tumor microenvironment to more completely understand how the immune compartment is regulated by senescent tumors.


Assuntos
Senescência Celular , Neoplasias , Humanos , Fenótipo , Citocinas/metabolismo , Neoplasias/patologia , Imunoterapia , Microambiente Tumoral
20.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37503008

RESUMO

The persistence of ovarian cancer stem-like cells (OvCSCs) after chemotherapy resistance has been implicated in relapse. However, the ability of these relatively quiescent cells to produce the robust tumor regrowth necessary for relapse remains an enigma. Since normal stem cells exist in a niche, and tumor-associated macrophages (TAMs) are the highest abundance immune cell within ovarian tumors, we hypothesized that TAMs may influence OvCSC proliferation. To test this, we optimized OvCSC enrichment by sphere culture and in vitro polarization of monocytes to a TAM-like M2 phenotype. Using cocultures that permitted the exchange of only soluble factors, we found that M2 macrophages increased the proliferation of sphere cells. Longer-term exposure (5-7 days) to soluble TAM factors led to retention of some stem cell features by OvCSCs but loss of others, suggesting that TAMs may support an intermediate stemness phenotype in OvCSCs. Although TAM coculture decreased the percentage of OvCSCs surviving chemotherapy, it increased the overall number. We therefore sought to determine the influence of this interaction on chemotherapy efficacy in vivo and found that inhibiting macrophages improved chemotherapy response. Comparing the gene expression changes in OvCSCs cocultured with TAMs to publicly available patient data identified 34 genes upregulated in OvCSCs by exposure to soluble TAM factors whose expression correlates with outcome. Overall, these data suggest that TAMs may influence OvCSC proliferation and impact therapeutic response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA