RESUMO
Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. They are best known as inducible transcriptional regulators of genes encoding molecular chaperones and other stress proteins. Four members of the HSF family are also important for normal development and lifespan-enhancing pathways, and the repertoire of HSF targets has thus expanded well beyond the heat shock genes. These unexpected observations have uncovered complex layers of post-translational regulation of HSFs that integrate the metabolic state of the cell with stress biology, and in doing so control fundamental aspects of the health of the proteome and ageing.
Assuntos
Proteínas de Choque Térmico/metabolismo , Fatores de Transcrição/metabolismo , Animais , Crescimento e Desenvolvimento , Proteínas de Choque Térmico/genética , Humanos , Longevidade , Modelos Biológicos , Filogenia , Estresse Fisiológico , Fatores de Transcrição/genéticaRESUMO
The current statistics on cancer show that 90% of all human cancers originate from epithelial cells. Breast and prostate cancer are examples of common tumors of epithelial origin that would benefit from improved drug treatment strategies. About 90% of preclinically approved drugs fail in clinical trials, partially due to the use of too simplified in vitro models and a lack of mimicking the tumor microenvironment in drug efficacy testing. This review focuses on the origin and mechanism of epithelial cancers, followed by experimental models designed to recapitulate the epithelial cancer structure and microenvironment, such as 2D and 3D cell culture models and animal models. A specific focus is put on novel technologies for cell culture of spheroids, organoids, and 3D-printed tissue-like models utilizing biomaterials of natural or synthetic origins. Further emphasis is laid on high-content imaging technologies that are used in the field to visualize in vitro models and their morphology. The associated technological advancements and challenges are also discussed. Finally, the review gives an insight into the potential of exploiting nanotechnological approaches in epithelial cancer research both as tools in tumor modeling and how they can be utilized for the development of nanotherapeutics.
Assuntos
Bioimpressão , Neoplasias da Mama , Modelos Biológicos , Neoplasias Epiteliais e Glandulares , Organoides , Impressão Tridimensional , Neoplasias da Próstata , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Masculino , Nanotecnologia , Neoplasias Epiteliais e Glandulares/diagnóstico por imagem , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Organoides/diagnóstico por imagem , Organoides/metabolismo , Organoides/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Engenharia TecidualRESUMO
BACKGROUND: Inhibition of androgen receptor (AR) signaling is the main treatment strategy in advanced prostate cancer (PCa). A subset of castration resistant prostate cancer (CRPC) bypasses the AR blockade by increased fibroblast growth factor receptor (FGFR) signaling. The first- and second-generation, non-covalent FGFR inhibitors (FGFRis) have largely failed in the clinical trials against PCa. PURPOSE: In this study, we tested the drug sensitivity of LNCaP, VCaP, and CWR-R1PCa cell lines to second-generation, covalent FGFRis (FIIN1, FIIN2) and a novel FGFR downstream molecule inhibitor (FRS2αi). METHODS: 2D and 3D mono- and co-cultures of cancer cells, and cancer-associated fibroblasts (CAFs) were used to mimic tumor-stroma interactions in the extracellular matrix (ECM). The treatment responses of the FGFR signaling molecules, the viability and proliferation of cancer cells, and CAFs were determined through immunoblotting, migration assay, cell viability assay, and real-time imaging. Immunofluorescent and confocal microscopy images of control and treated cultures of cancer cells and CAFs, and their morphometric data were deduced. RESULTS: The FGFRis were more effective in mono-cultures of the cancer cells compared with co-cultures with CAFs. The FRS2αi was specifically effective in co-cultures with CAFs but was not cytotoxic to CAF mono-cultures as in the case of FIIN1 and FIIN2. At the molecular level, FRS2αi decreased p-FRS2α, p-ERK1/2, and activated apoptosis as monitored by cleaved caspase-3 activity in a concentration-dependent manner in the co-cultures. We observed no synergistic drug efficacy in the combination treatment of the FGFRi with ARi, enzalutamide, and darolutamide. The FRS2αi treatment led to a decrease in proliferation of cancer cell clusters in co-cultures as indicated by their reduced size and Ki67 expression. CONCLUSIONS: CAFs exert a protective effect on cancer cells and should be included in the in vitro models to make them physiologically more relevant in screening and testing of FGFRis. The FRS2αi was the most potent agent in reducing the viability and proliferation of the 3D organotypic co-cultures, mainly by disrupting the contact between CAFs and cancer cell clusters. The next-generation FGFRi, FRS2αi, may be a better alternative treatment option for overcoming ARi treatment resistance in advanced PCa.
Assuntos
Fibroblastos Associados a Câncer , Proliferação de Células , Técnicas de Cocultura , Receptores de Fatores de Crescimento de Fibroblastos , Humanos , Masculino , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologiaRESUMO
Heat shock factor 1 (HSF1) is an important transcription factor in cellular stress responses, cancer, aging, and developmental processes including gametogenesis. Disruption of Hsf1, together with another HSF family member, Hsf2, causes male sterility and complete lack of mature sperm in mice, but the specific role of HSF1 in spermatogenesis has remained unclear. Here, we show that HSF1 is transiently expressed in meiotic spermatocytes and haploid round spermatids in mouse testis. The Hsf1(-/-) male mice displayed regions of seminiferous tubules containing only spermatogonia and increased morphological abnormalities in sperm heads. In search for HSF1 target genes, we identified 742 putative promoters in mouse testis. Among them, the sex chromosomal multicopy genes that are expressed in postmeiotic cells were occupied by HSF1. Given that the sex chromatin mostly is repressed during and after meiosis, it is remarkable that HSF1 directly regulates the transcription of sex-linked multicopy genes during postmeiotic repression. In addition, our results show that HSF1 localizes to the sex body prior to the meiotic divisions and to the sex chromocenter after completed meiosis. To the best of our knowledge, HSF1 is the first known transcription factor found at the repressed sex chromatin during meiosis.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Meiose/fisiologia , Túbulos Seminíferos/metabolismo , Cromatina Sexual/metabolismo , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Família Multigênica/fisiologia , Cromatina Sexual/genética , Fatores de Transcrição/genéticaRESUMO
The mammalian Y chromosome is essential for spermatogenesis, which is characterized by sperm cell differentiation and chromatin condensation for acquisition of correct shape of the sperm. Deletions of the male-specific region of the mouse Y chromosome long arm (MSYq), harboring multiple copies of a few genes, lead to sperm head defects and impaired fertility. Using chromatin immunoprecipitation on promoter microarray (ChIP-chip) on mouse testis, we found a striking in vivo MSYq occupancy by heat shock factor 2 (HSF2), a transcription factor involved in spermatogenesis. HSF2 was also found to regulate the transcription of MSYq resident genes, whose transcriptional regulation has been unknown. Importantly, disruption of Hsf2 caused a similar phenotype as the 2/3 deletion of MSYq, i.e., altered expression of the multicopy genes and increased mild sperm head abnormalities. Consequently, aberrant levels of chromatin packing proteins and more frequent DNA fragmentation were detected, implying that HSF2 is required for correct chromatin organization in the sperm. Our findings define a physiological role for HSF2 in the regulation of MSYq resident genes and the quality of sperm.
Assuntos
Cromossomos de Mamíferos/metabolismo , Fertilidade/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico/metabolismo , Cabeça do Espermatozoide/metabolismo , Espermatogênese/fisiologia , Fatores de Transcrição/metabolismo , Cromossomo Y/metabolismo , Animais , Forma Celular/fisiologia , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina/métodos , Deleção Cromossômica , Cromossomos de Mamíferos/genética , Fragmentação do DNA , Perfilação da Expressão Gênica/métodos , Proteínas de Choque Térmico/genética , Masculino , Camundongos , Camundongos Knockout , Família Multigênica/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Testículo/citologia , Testículo/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Cromossomo Y/genéticaRESUMO
CD73 is a cell surface ecto-5'-nucleotidase, which converts extracellular adenosine monophosphate to adenosine. High tumor CD73 expression is associated with poor outcome among triple-negative breast cancer (TNBC) patients. Here we investigated the mechanisms by which CD73 might contribute to TNBC progression. This was done by inhibiting CD73 with adenosine 5'-(α, ß-methylene) diphosphate (APCP) in MDA-MB-231 or 4T1 TNBC cells or through shRNA-silencing (sh-CD73). Effects of such inhibition on cell behavior was then studied in normoxia and hypoxia in vitro and in an orthotopic mouse model in vivo. CD73 inhibition, through shRNA or APCP significantly decreased cellular viability and migration in normoxia. Inhibition of CD73 also resulted in suppression of hypoxia-induced increase in viability and prevented cell protrusion elongation in both normoxia and hypoxia in cancer cells. Sh-CD73 4T1 cells formed significantly smaller and less invasive 3D organoids in vitro, and significantly smaller orthotopic tumors and less lung metastases than control shRNA cells in vivo. CD73 suppression increased E-cadherin and decreased vimentin expression in vitro and in vivo, proposing maintenance of a more epithelial phenotype. In conclusion, our results suggest that CD73 may promote early steps of tumor progression, possibly through facilitating epithelial-mesenchymal transition.
Assuntos
5'-Nucleotidase/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/enzimologia , Neoplasias Mamárias Animais/enzimologia , Proteínas de Neoplasias/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , 5'-Nucleotidase/genética , Animais , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Breast cancer (BC) resistance to endocrine therapy results from constitutively active or aberrant estrogen receptor α (ERα) signaling, and ways to block ERα pathway in these tumors are sought after. We identified the H3K79 methyltransferase DOT1L as a novel cofactor of ERα in BC cell chromatin, where the two proteins colocalize to regulate estrogen target gene transcription. DOT1L blockade reduces proliferation of hormone-responsive BC cells in vivo and in vitro, consequent to cell cycle arrest and apoptotic cell death, with widespread effects on ER-dependent gene transcription, including ERα and FOXA1 gene silencing. Antiestrogen-resistant BC cells respond to DOT1L inhibition also in mouse xenografts, with reduction in ERα levels, H3K79 methylation, and tumor growth. These results indicate that DOT1L is an exploitable epigenetic target for treatment of endocrine therapy-resistant ERα-positive BCs.
Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Moduladores de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/genética , Inativação Gênica , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Modelos Animais de Doenças , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Intracellular drug delivery by mesoporous silica nanoparticles (MSNs) carrying hydrophilic and hydrophobic fluorophores as model drug cargo is demonstrated on 2D cellular and 3D tumor organoid level. Two different MSN designs, chosen on the basis of the characteristics of the loaded cargo, were used: MSNs with a surface-grown poly(ethylene imine), PEI, coating only for hydrophobic cargo and MSNs with lipid bilayers covalently coupled to the PEI layer as a diffusion barrier for hydrophilic cargo. First, the effect of hydrophobicity corresponding to loading degree (hydrophobic cargo) as well as surface charge (hydrophilic cargo) on intracellular drug release was studied on the cellular level. All incorporated agents were able to release to varying degrees from the endosomes into the cytoplasm in a loading degree (hydrophobic) or surface charge (hydrophilic) dependent manner as detected by live cell imaging. When administered to organotypic 3D tumor models, the hydrophilic versus hydrophobic cargo-carrying MSNs showed remarkable differences in labeling efficiency, which in this case also corresponds to drug delivery efficacy in 3D. The obtained results could thus indicate design aspects to be taken into account for the development of efficacious intracellular drug delivery systems, especially in the translation from standard 2D culture to more biologically relevant organotypic 3D cultures.
RESUMO
Prostate cancer is a highly heterogeneous disease and the clinical outcome is varying. While current prognostic tools are regarded insufficient, there is a critical need for markers that would aid prognostication and patient risk-stratification. Heat shock transcription factor 1 (HSF1) is crucial for cellular homeostasis, but also a driver of oncogenesis. The clinical relevance of HSF1 in prostate cancer is, however, unknown. Here, we identified HSF1 as a potential biomarker in mRNA expression datasets on prostate cancer. Clinical validation was performed on tissue microarrays from independent cohorts: one constructed from radical prostatectomies from 478 patients with long term follow-up, and another comprising of regionally advanced to distant metastatic samples. Associations with clinical variables and disease outcomes were investigated. Increased nuclear HSF1 expression correlated with disease advancement and aggressiveness and was, independently from established clinicopathological variables, predictive of both early initiation of secondary therapy and poor disease-specific survival. In a joint model with the clinical Cancer of the Prostate Risk Assessment post-Surgical (CAPRA-S) score, nuclear HSF1 remained a predictive factor of shortened disease-specific survival. The results suggest that nuclear HSF1 expression could serve as a novel prognostic marker for patient risk-stratification on disease progression and survival after radical prostatectomy.
RESUMO
Wnt-11 promotes cancer cell migration and invasion independently of ß-catenin but the receptors involved remain unknown. Here, we provide evidence that FZD8 is a major Wnt-11 receptor in prostate cancer that integrates Wnt-11 and TGF-ß signals to promote EMT. FZD8 mRNA is upregulated in multiple prostate cancer datasets and in metastatic cancer cell lines in vitro and in vivo. Analysis of patient samples reveals increased levels of FZD8 in cancer, correlating with Wnt-11. FZD8 co-localizes and co-immunoprecipitates with Wnt-11 and potentiates Wnt-11 activation of ATF2-dependent transcription. FZD8 silencing reduces prostate cancer cell migration, invasion, three-dimensional (3D) organotypic cell growth, expression of EMT-related genes, and TGF-ß/Smad-dependent signaling. Mechanistically, FZD8 forms a TGF-ß-regulated complex with TGF-ß receptors that is mediated by the extracellular domains of FZD8 and TGFBR1. Targeting FZD8 may therefore inhibit aberrant activation of both Wnt and TGF-ß signals in prostate cancer.
Assuntos
Neoplasias da Próstata/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Fator 2 Ativador da Transcrição/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Inativação Gênica , Humanos , Masculino , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias da Próstata/patologia , Receptores de Superfície Celular/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Smad/metabolismoRESUMO
Organisms must be able to sense and respond rapidly to changes in their environment in order to maintain homeostasis and survive. Induction of heat shock proteins (Hsps) is a common cellular defense mechanism for promoting survival in response to various stress stimuli. Heat shock factors (HSFs) are transcriptional regulators of Hsps, which function as molecular chaperones in protecting cells against proteotoxic damage. Mammals have three different HSFs that have been considered functionally distinct: HSF1 is essential for the heat shock response and is also required for developmental processes, whereas HSF2 and HSF4 are important for differentiation and development. Specifically, HSF2 is involved in corticogenesis and spermatogenesis, and HSF4 is needed for maintenance of sensory organs, such as the lens and the olfactory epithelium. Recent evidence, however, suggests a functional interplay between HSF1 and HSF2 in the regulation of Hsp expression under stress conditions. In lens formation, HSF1 and HSF4 have been shown to have opposite effects on gene expression. In this chapter, we present the different roles of the mammalian HSFs as regulators of cellular stress and developmental processes. We highlight the interaction between different HSFs and discuss the discoveries of novel target genes in addition to the classical Hsps.
Assuntos
Proteínas de Choque Térmico/fisiologia , Resposta ao Choque Térmico/fisiologia , Estresse Oxidativo/fisiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Humanos , Família Multigênica , Estresse Oxidativo/genéticaRESUMO
Glandular epithelial cells differentiate into three-dimensional (3D) multicellular or acinar structures, particularly when embedded in laminin-rich extracellular matrix (ECM). The spectrum of different multicellular morphologies formed in 3D is a reliable indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. Motile cancer cells may actively invade the matrix, utilizing epithelial, mesenchymal, or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are also very sensitive to small-molecule inhibitors that, e.g., target the actin cytoskeleton. Our strategy is to recapitulate the formation and the histology of complex solid cancer tissues in vitro, based on cell culture technologies that promote the intrinsic differentiation potential of normal and transformed epithelial cells, and also including stromal fibroblasts and other key components of the tumor microenvironment. We have developed a streamlined stand-alone software solution that supports the detailed quantitative phenotypic analysis of organotypic 3D cultures. This approach utilizes the power of automated image analysis as a phenotypic readout in cell-based assays. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of a large number of multicellular structures, which can form a multitude of different organoid shapes, sizes, and textures according to their capacity to engage in epithelial differentiation programs or not. At the far end of this spectrum of tumor-relevant differentiation properties, there are highly invasive tumor cells or multicellular structures that may rapidly invade the surrounding ECM, but fail to form higher-order epithelial tissue structures. Furthermore, this system allows us to monitor dynamic changes that can result from the extraordinary plasticity of tumor cells, e.g., epithelial-to-mesenchymal transition in live cell settings. Furthermore, AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. Our approach supports the growing needs for user-friendly, straightforward solutions that facilitate cell-based organotypic 3D assays in basic research, drug discovery, and target validation.
Assuntos
Técnicas de Cultura de Células/métodos , Processamento de Imagem Assistida por Computador/métodos , Organoides/citologia , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Humanos , Organoides/metabolismo , Organoides/patologia , Fenótipo , Software , Microambiente TumoralRESUMO
Organotypic, three-dimensional (3D) cancer models have enabled investigations of complex microtissues in increasingly realistic conditions. However, a drawback of these advanced models remains the poor biological relevance of cancer cell lines, while higher clinical significance would be obtainable with patient-derived cell cultures. Here, we describe the generation and data analysis of 3D microtissue models from patient-derived xenografts (PDX) of non-small cell lung carcinoma (NSCLC). Standard of care anti-cancer drugs were applied and the altered multicellular morphologies were captured by confocal microscopy, followed by automated image analyses to quantitatively measure phenotypic features for high-content chemosensitivity tests. The obtained image data were thresholded using a local entropy filter after which the image foreground was split into local regions, for a supervised classification into tumor or fibroblast cell types. Robust statistical methods were applied to evaluate treatment effects on growth and morphology. Both novel and existing computational approaches were compared at each step, while prioritizing high experimental throughput. Docetaxel was found to be the most effective drug that blocked both tumor growth and invasion. These effects were also validated in PDX tumors in vivo. Our research opens new avenues for high-content drug screening based on patient-derived cell cultures, and for personalized chemosensitivity testing.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Automação Laboratorial/métodos , Docetaxel/farmacologia , HumanosRESUMO
Expression of follicle-stimulation hormone receptor (FSHR) is confined to gonads and at low levels to some extragonadal tissues like human umbilical vein endothelial cells (HUVEC). FSH-FSHR signaling was shown to promote HUVEC angiogenesis and thereafter suggested to have an influential role in pregnancy. We revisited hereby the expression and functionality of FSHR in HUVECs angiogenesis, and were unable to reproduce the FSHR expression in human umbilical cord, HUVECs or immortalized HUVECs (HUV-ST). Positive controls as granulosa cells and HEK293 cells stably transfected with human FSHR cDNA expressed FSHR signal. In contrast to positive control VEGF, FSH treatment showed no effects on tube formation, nitric oxide production, wound healing or cell proliferation in HUVEC/HUV-ST. Thus, it remains open whether the FSH-FSHR activation has a direct regulatory role in the angiogenesis of HUVECs.
Assuntos
Proliferação de Células/efeitos dos fármacos , Hormônio Foliculoestimulante/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Receptores do FSH/biossíntese , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Gravidez , Receptores do FSH/genéticaRESUMO
The identification and validation of biomarkers for clinical applications remains an important issue for improving diagnostics and therapy in many diseases, including prostate cancer. Gene expression profiles are routinely applied to identify diagnostic and predictive biomarkers or novel targets for cancer. However, only few predictive markers identified in silico have also been validated for clinical, functional or mechanistic relevance in disease progression. In this study, we have used a broad, bioinformatics-based approach to identify such biomarkers across a spectrum of progression stages, including normal and tumor-adjacent, premalignant, primary and late stage lesions. Bioinformatics data mining combined with clinical validation of biomarkers by sensitive, quantitative reverse-transcription PCR (qRT-PCR), followed by functional evaluation of candidate genes in disease-relevant processes, such as cancer cell proliferation, motility and invasion. From 300 initial candidates, eight genes were selected for validation by several layers of data mining and filtering. For clinical validation, differential mRNA expression of selected genes was measured by qRT-PCR in 197 clinical prostate tissue samples including normal prostate, compared against histologically benign and cancerous tissues. Based on the qRT-PCR results, significantly different mRNA expression was confirmed in normal prostate versus malignant PCa samples (for all eight genes), but also in cancer-adjacent tissues, even in the absence of detectable cancer cells, thus pointing to the possibility of pronounced field effects in prostate lesions. For the validation of the functional properties of these genes, and to demonstrate their putative relevance for disease-relevant processes, siRNA knock-down studies were performed in both 2D and 3D organotypic cell culture models. Silencing of three genes (DLX1, PLA2G7 and RHOU) in the prostate cancer cell lines PC3 and VCaP by siRNA resulted in marked growth arrest and cytotoxicity, particularly in 3D organotypic cell culture conditions. In addition, silencing of PLA2G7, RHOU, ACSM1, LAMB1 and CACNA1D also resulted in reduced tumor cell invasion in PC3 organoid cultures. For PLA2G7 and RHOU, the effects of siRNA silencing on proliferation and cell-motility could also be confirmed in 2D monolayer cultures. In conclusion, DLX1 and RHOU showed the strongest potential as useful clinical biomarkers for PCa diagnosis, further validated by their functional roles in PCa progression. These candidates may be useful for more reliable identification of relapses or therapy failures prior to the recurrence local or distant metastases.
Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Homeodomínio/metabolismo , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Idoso , Biomarcadores Tumorais/genética , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Laminina/genética , Laminina/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Interferência de RNA , Fatores de Transcrição/genética , Proteínas rho de Ligação ao GTP/genéticaRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0155901.].
RESUMO
Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy.
Assuntos
Imageamento Tridimensional/estatística & dados numéricos , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Cadeias de Markov , Microscopia de Fluorescência por Excitação Multifotônica , Modelos BiológicosRESUMO
Cancer-associated fibroblasts (CAFs) constitute an important part of the tumor microenvironment and promote invasion via paracrine functions and physical impact on the tumor. Although the importance of including CAFs into three-dimensional (3D) cell cultures has been acknowledged, computational support for quantitative live-cell measurements of complex cell cultures has been lacking. Here, we have developed a novel automated pipeline to model tumor-stroma interplay, track motility and quantify morphological changes of 3D co-cultures, in real-time live-cell settings. The platform consists of microtissues from prostate cancer cells, combined with CAFs in extracellular matrix that allows biochemical perturbation. Tracking of fibroblast dynamics revealed that CAFs guided the way for tumor cells to invade and increased the growth and invasiveness of tumor organoids. We utilized the platform to determine the efficacy of inhibitors in prostate cancer and the associated tumor microenvironment as a functional unit. Interestingly, certain inhibitors selectively disrupted tumor-CAF interactions, e.g. focal adhesion kinase (FAK) inhibitors specifically blocked tumor growth and invasion concurrently with fibroblast spreading and motility. This complex phenotype was not detected in other standard in vitro models. These results highlight the advantage of our approach, which recapitulates tumor histology and can significantly improve cancer target validation in vitro.
Assuntos
Técnicas de Cultura de Células/métodos , Rastreamento de Células/métodos , Imagem com Lapso de Tempo/métodos , Microambiente Tumoral , Algoritmos , Comunicação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Colágeno/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Masculino , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/ultraestrutura , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports the growing needs for user-friendly, straightforward solutions that facilitate large-scale, cell-based 3D assays in basic research, drug discovery, and target validation.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Processamento de Imagem Assistida por Computador/métodos , Linhagem Celular Tumoral , Células Epiteliais/citologia , Matriz Extracelular/metabolismo , HumanosRESUMO
Heat shock transcription factor 1 (HSF1) is the main regulator of the stress response that triggers the transcription of several genes encoding heat shock proteins (Hsps). Hsps act as molecular chaperones involved in protein folding, stability, and trafficking. HSF1 is highly expressed in oocytes and Hsf1 knock-out in mice revealed that in the absence of stress this factor plays an important role in female reproduction. We previously reported that Hsf1(-/-) females produce oocytes but no viable embryos. Consequently, we asked whether oocytes require HSF1 to regulate a particular set of Hsps necessary for them to develop. We find that Hsp90alpha (Hspaa1) is the major HSF1-dependent chaperone inasmuch as Hsf1 knock-out resulted in Hsp90-depleted oocytes. These oocytes exhibited delayed germinal vesicle breakdown (or G(2)/M transition), partial meiosis I block, and defective asymmetrical division. To probe the role of Hsp90alpha in this meiotic syndrome, we analyzed meiotic maturation in wild-type oocytes treated with a specific inhibitor of Hsp90, 17-allylamino-17-demethoxy-geldanamycin, and observed similar defects. At the molecular level we showed that, together with these developmental anomalies, CDK1 and MAPK, key meiotic kinases, were significantly disturbed. Thus, our data demonstrate that HSF1 is a maternal transcription factor essential for normal progression of meiosis.