Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 191, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486134

RESUMO

BACKGROUND: Enriching the soil with organic matter such as humic and fulvic acid to increase its content available nutrients, improves the chemical properties of the soil and increases plant growth as well as grain yield. In this study, we conducted a field experiment using humic acid (HA), fulvic acid (FA) and recommended dose (RDP) of phosphorus fertilizer to treat Hordeum vulgare seedling, in which four concentrations from HA, FA and RDP (0.0 %, 50 %, 75 % and 100%) under saline soil conditions . Moreover, some agronomic traits (e.g. grain yield, straw yield, spikes weight, plant height, spike length and spike weight) in barley seedling after treated with different concentrations from HA, FA and RDP were determined. As such the beneficial effects of these combinations to improve plant growth, N, P, and K uptake, grain yield, and its components under salinity stress were assessed. RESULTS: The findings showed that the treatments HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6), improved number of spikes/plant, 1000-grain weight, grain yield/ha, harvest index, the amount of uptake of nitrogen (N), phosphorous (P) and potassium (K) in straw and grain. The increase for grain yield over the control was 64.69, 56.77, 49.83, 49.17, and 44.22% in the first season, and 64.08, 56.63, 49.19, 48.87, and 43.69% in the second season,. Meanwhile, the increase for grain yield when compared to the recommended dose was 22.30, 16.42, 11.27, 10.78, and 7.11% in the first season, and 22.17, 16.63, 11.08, 10.84, and 6.99% in the second season. Therefore, under salinity conditions the best results were obtained when, in addition to phosphate fertilizer, the soil was treated with humic acid or foliar application the plants with fulvic acid under one of the following treatments: HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6). CONCLUSIONS: The result of the use of organic amendments was an increase in the tolerance of barley plant to salinity stress, which was evident from the improvement in the different traits that occurred after the treatment using treatments that included organic amendments (humic acid or fulvic acid).


Assuntos
Benzopiranos , Hordeum , Solo , Solo/química , Substâncias Húmicas/análise , Fertilizantes/análise , Fósforo
2.
Heliyon ; 10(4): e26537, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420474

RESUMO

Nanotechnology is attracting significant attention worldwide due to its applicability across various sectors. Titanium dioxide nanoparticles (TiO2NPs) are among the key nanoparticles (NPs) that have gained extensive practical use and can be synthesized through a wide range of physical, chemical, and green approaches. However, TiO2NPs have attracted a significant deal of interest due to the increasing demand for enhancing the endurance to abiotic stresses such as temperature stress. In this article, we discuss the effects of temperature stresses such as low (4 °C) and high temperatures (35 °C) on TiO2NPs. Due to climate change, low and high temperature stress impair plant growth and development. However, there are still many aspects of how plants respond to low and high temperature stress and how they influence plant growth under TiO2NPs treatments which are poorly understood. TiO2NPs can be utilized efficiently for plant growth and development, particularly under temperature stress, however the response varies according to type, size, shape, dose, exposure time, metal species, and other variables. It has been demonstrated that TiO2NPs are effective at enhancing the photosynthetic and antioxidant systems of plants under temperature stress. This analysis also identifies key knowledge gaps and possible future perspectives for the reliable application of TiO2NPs to plants under abiotic stress.

3.
Front Cell Dev Biol ; 12: 1399065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933330

RESUMO

Lipids, the primary constituents of the cell membrane, play essential roles in nearly all cellular functions, such as cell-cell recognition, signaling transduction, and energy provision. Lipid metabolism is necessary for the maintenance of life since it regulates the balance between the processes of synthesis and breakdown. Increasing evidence suggests that cancer cells exhibit abnormal lipid metabolism, significantly affecting their malignant characteristics, including self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. Prominent oncogenic signaling pathways that modulate metabolic gene expression and elevate metabolic enzyme activity include phosphoinositide 3-kinase (PI3K)/AKT, MAPK, NF-kB, Wnt, Notch, and Hippo pathway. Conversely, when metabolic processes are not regulated, they can lead to malfunctions in cellular signal transduction pathways. This, in turn, enables uncontrolled cancer cell growth by providing the necessary energy, building blocks, and redox potentials. Therefore, targeting lipid metabolism-associated oncogenic signaling pathways could be an effective therapeutic approach to decrease cancer incidence and promote survival. This review sheds light on the interactions between lipid reprogramming and signaling pathways in cancer. Exploring lipid metabolism as a target could provide a promising approach for creating anticancer treatments by identifying metabolic inhibitors. Additionally, we have also provided an overview of the drugs targeting lipid metabolism in cancer in this review.

4.
Heliyon ; 10(1): e24009, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38230238

RESUMO

Dia/betes is a serious health concern in many countries with high blood glucose, obesity, and multiple organ failures in late stages. Treating diabetes with effective drugs is still a challenging issue since most of the available diabetic drugs are not effective in combating diabetes, especially in secondary disease complications like obesity, retinopathy, and nephropathy associated with diabetes. Hence search for effective antidiabetic medication, especially from natural sources is mandatory with no adverse side effects. In the present study, a combined herbal aqueous extract of Tribulus terrestris and Curcuma amada was administered to diabetic-induced rats for 37 days. During experimentation, the mean blood glucose level was estimated and at the end of the experiment on the 37th day, the animal was sacrificed and observed for weight gain, plasma insulin, glycogen, glycated hemoglobin, urea, and creatinine level. The results revealed that TT and CA extract-treated diabetic groups significantly lowered the mean blood glucose level followed by increased glycogen and insulin level. Urea, creatinine, and HbA1c levels were considerably reduced in TT and CA-treated diabetic animals as compared to that of antidiabetic drug Glibenclamide-treated groups. TT and CA-treated diabetic animals showed considerable net body weight gain at the end of the experimental day. A concluding remark of the study shows that TT and CA herbal extract is effective against diabetes and it can be considered as an antidiabetic agent in ayurvedic medicine practice.

5.
Chemosphere ; 360: 142357, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768791

RESUMO

Soil salinization and sodication harm soil fertility and crop production, especially in dry regions. To combat this, using biochar combined with gypsum, lime, and farm manure is a promising solution for improving salt-affected soils. In a pot experiment, cotton stick biochar (BC) was applied at a rate of 20 t/ha in combination with gypsum (G), lime (L), and farm manure (F) at rates of 5 and 10 t/ha. These were denoted as BCG-5, BCL-5, BCF-5, BCG-10, BCL-10, and BCF-10. Three different types of soils with electrical conductivity (EC) to sodium adsorption ratio (SAR) ratios of 2.45:13.7, 9.45:22, and 11.56:40 were used for experimentation. The application of BCG-10 led to significant improvements in rice biomass, chlorophyll content, and overall growth. It was observed that applying BCG-10 to soils increased the membrane stability index by 75% in EC:SAR (2.45:13.7), 97% in EC:SAR (9.45:22), and 40% in EC:SAR (11.56:40) compared to respective control treatments. After BCG-10 was applied, the hydrogen peroxide in leaves dropped by 29%, 23%, and 21% in EC:SAR (2.45:13.7), EC:SAR (9.45:22), and EC:SAR (11.56:40) soils, relative to their controls, respectively. The application of BCG-10 resulted in glycine betaine increases of 60, 119, and 165% in EC: SAR (2.45:13.7), EC: SAR (9.45:22), and EC: SAR (11.56:40) soils. EC: SAR (2.45:13.7), EC: SAR (9.45:22), and EC: SAR (11.56:40) soils all had 70, 109, and 130% more ascorbic acid in BCG-10 applied treatment, respectively. The results of this experiment show that BCG-10 increased the growth and physiological traits of rice plants were exposed to different levels of salt stress. This was achieved by lowering hydrogen peroxide levels, making plant cells more stable, and increasing non-enzymatic activity.


Assuntos
Oryza , Estresse Salino , Sulfato de Cálcio , Esterco , Oryza/fisiologia , Tolerância ao Sal , Solo/química , Clima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA